Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The strange world of self-induced transparency and light bullets

The remarkable phenomena of self-induced transparency and solitons will be studied in a new project supported by a grant of £397K from EPSRC. This joint theoretical and experimental project, involving scientists from the Advanced Technology Institute at the University of Surrey along with colleagues in the UK, France, and the USA, will study fundamental quantum coherent phenomena which may one day have applications in optical information processing.

The passage of very bright, very short light pulses through an optical material shows many interesting and useful effects. Normally, the pulse would spread out in space and time as a result of diffraction and dispersion. However when the pulse is very bright, nonlinear effects can exactly cancel this spreading, and the light pulse propagates without any change in shape: a 'soliton' or 'light bullet'. It is easier to form solitons when the light is confined to a small cavity, and 'cavity solitons' are now attracting interest as a way of storing and manipulating data for optical storage or optical computing. Another effect, seen when the pulse duration is very short, is self-induced transparency (SIT), in which the material which normally absorbs light becomes completely transparent to a bright, short-duration light pulse.

This research project is based on theoretical predictions by one of the co-investigators, Dr. Gabriella Slavcheva. Using a new theory of nonlinear coherent pulse dynamics based on Richard Feynman's model of atoms in an electromagnetic field, Dr. Slavcheva predicted the existence of cavity solitons formed as a result of self-induced transparency.

With the help of collaborators from the École Normale Supérieure in Paris, and the University of Arizona, the scientists from the ATI will employ both theory and experiment to demonstrate the existence of this new type of soliton and to investigate the potential for applications in information technology and communications.

“Soliton Formation through Self-Induced Transparency in Semiconductor Microcavities”, Professor Ortwin Hess, Professor Jeremy Allam & Dr. Gabriela Slavcheva (EPSRC grant EP/D060958/1)

Stuart Miller | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>