Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The strange world of self-induced transparency and light bullets

27.06.2006
The remarkable phenomena of self-induced transparency and solitons will be studied in a new project supported by a grant of £397K from EPSRC. This joint theoretical and experimental project, involving scientists from the Advanced Technology Institute at the University of Surrey along with colleagues in the UK, France, and the USA, will study fundamental quantum coherent phenomena which may one day have applications in optical information processing.

The passage of very bright, very short light pulses through an optical material shows many interesting and useful effects. Normally, the pulse would spread out in space and time as a result of diffraction and dispersion. However when the pulse is very bright, nonlinear effects can exactly cancel this spreading, and the light pulse propagates without any change in shape: a 'soliton' or 'light bullet'. It is easier to form solitons when the light is confined to a small cavity, and 'cavity solitons' are now attracting interest as a way of storing and manipulating data for optical storage or optical computing. Another effect, seen when the pulse duration is very short, is self-induced transparency (SIT), in which the material which normally absorbs light becomes completely transparent to a bright, short-duration light pulse.

This research project is based on theoretical predictions by one of the co-investigators, Dr. Gabriella Slavcheva. Using a new theory of nonlinear coherent pulse dynamics based on Richard Feynman's model of atoms in an electromagnetic field, Dr. Slavcheva predicted the existence of cavity solitons formed as a result of self-induced transparency.

With the help of collaborators from the École Normale Supérieure in Paris, and the University of Arizona, the scientists from the ATI will employ both theory and experiment to demonstrate the existence of this new type of soliton and to investigate the potential for applications in information technology and communications.

“Soliton Formation through Self-Induced Transparency in Semiconductor Microcavities”, Professor Ortwin Hess, Professor Jeremy Allam & Dr. Gabriela Slavcheva (EPSRC grant EP/D060958/1)

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>