Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA'S Cassini spacecraft captures Saturnian moon ballet

23.06.2006
The cold, icy orbs of the Saturn system come to life in a slew of new movie clips showing the ringed planet's moons in motion.
In addition to their drama and visual interest, scientists use these movies to refine their understanding of the orbits of Saturn's moons. Engineers at NASA's Jet Propulsion Laboratory, Pasadena, Calif., use the same images, and the orbital positions of the moons, to help them navigate the Cassini spacecraft, which is nearing the halfway mark of its four-year tour.

Pictures capturing several moons in one frame are often strikingly beautiful, especially when deliberately imaged in red, green and blue spectral filters, which allow scientists to create a color photo. One recent color image shows two of Saturn's most fascinating moons, icy-white Enceladus and orange, haze-enshrouded Titan.

Caption: Many denizens of the Saturn system wear a uniformly gray mantle of darkened ice, but not so for these two most fascinating of moons. The brightest body in the Solar System, Enceladus, is contrasted here against Titan's smoggy golden murk.

Ironically, what these two moons hold in common gives rise to their starkly contrasting colors. Both bodies are, to varying degrees, geologically active. For Enceladus, its southern polar vents emit a spray of icy particles that coats the small moon, giving it a clean, white veneer. On Titan, as-yet-undefined processes are supplying the atmosphere with methane and other chemicals that are broken down by sunlight, creating the thick yellow-orange haze that suffuses the atmosphere and, over geologic time, falls and coats the surface.

The thin, bluish haze along Titan’s limb is caused when sunlight is scattered by haze particles roughly the same size as the wavelength of blue light, or around 400 nanometers.

Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were obtained on Feb. 5, 2006 using the Cassini spacecraft narrow-angle camera at a distance of 4.1 million kilometers (2.5 million miles) from Enceladus and 5.3 million kilometers (3.3 miles) from Titan. Resolution in the original images was 25 kilometers (16 miles) per pixel on Enceladus and 32 kilometers (20 miles) per pixel on Titan. The view has been magnified by a factor of two.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington, D.C. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>