Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science of sniping on eBay, quantum experiment breakthrough, and tunable nanoresonators

23.06.2006
If you have ever tried to bid in an online auction, the chances are you have been sniped. That is, someone came along and placed a high bid just moments before the bidding deadline - eliminating your chances of outbidding them. Many people consider sniping unethical, robbing other bidders of a chance to buy an item and taking money out of sellers pockets by stifling fair competition.
Ethical or not, it turns out that sniping is the best way to win an auction. Researchers at Seoul National University have produced a model that mimics bidding behavior on eBay and a Korean auction site (auction.co.kr). The model confirms previous statistical studies of winning bidders that show that people who refrain from bidding at all until the very last seconds are much more likely to win than people who take part in earlier incremental bidding.

Although snipers miss out on occasion (if their late bids are not registered in time for the auction close) they are usually successful. Unless online auction companies adjust their rules to extend bidding deadlines when large, last second bids come in (as live auctioneers do), you are going to be better off sniping if you really must have that rare Pokemon card or Chia Pet planter.

Quantum Experiment Breakthrough: Interference of Independent Photons
R. Kaltenbaek et al.
Physical Review Letters (upcoming article, available to journalists on request)

Austrian physicists have managed the first demonstration of interference among independent photons - a phenomenon predicted decades ago, but experimentally unproven until now. The achievement is vital for future quantum computer designs as well as long distance versions of secure communication schemes that rely on quantum mechanics. Specifically, the experiment confirms that it will be possible to build quantum repeaters that transfer quantum information from one portion of a system to a remote portion, which is important if quantum computers and communications are ever to be realized.

At least one group has previously made similar claims (see PRL, 26 March 2006, http://link.aps.org/abstract/PRL/v96/e110501). In the earlier experiment, however, independent photons passed through some shared optical components, which would not be practical for physically separated portions of a real world quantum device and may lead to interactions that compromise the photons independence. The latest experiment demonstrates interference between photons that pass through completely separate sets of optical components. In addition to computational and communication applications, the experiment is an important demonstration of photon interactions that cannot be explained with classical physics, and therefore may lead to further experiments testing the foundations of quantum mechanics.

Linking quantum components together is a hot topic at the moment. At least two more PRL papers, one published this week and the other in the works, describe new quantum repeater proposals. One suggests quantum mechanically linking atoms through a mediating electron (A. T. Costa et al., http://link.aps.org/abstract/PRL/v96/e230501), another describes a quantum repeater design that relies on bright, coherent light rather than independent photons (P. van Loock et al., forthcoming PRL). Both papers are available to journalists on request.

Tunable Nanoresonators
K. Jensen et al.
Physical Review Letters, 2 June 2006
http://link.aps.org/abstract/PRL/v96/e215503

Researchers at the University of California at Berkeley (UCB) have developed a tunable, nanotube resonator that could lead to exquisitely sensitive and versatile sensors.

Nanoresonators are tiny vibrating beams, bridges or other structures. Because their resonant frequencies are highly dependent on various factors, such as their mass, length, and the stresses they are experiencing, nanoresonators make extremely sensitive measurement devices. (Recently, a nanoresonator-based scale managed to detect mass small enough to register the presence of a single bacterium.) Most nanoresonators operate at a single frequency or a very narrow band of frequencies. If a different frequency is required, you have to build a different resonator.

The UCB nanoresonators, however, are tunable because they are made of telescoping nanotubes that can extend like a trombone slide. By securing the telescoping nanotubes between two surfaces that can be moved relative to each other, the researchers were able to vary the nanoresonator frequencies over ranges of 50 to 75 megahertz. Each nanometer change in length leads to roughly a 1 megahertz shift in frequency, making the nanoresonators highly sensitive position and force sensors as well as tunable mass and frequency measurement devices.

Bidding Last Minute is Best on eBay
I. Yang and B. Kahng
Physical Review E, June 2006
http://link.aps.org/abstract/PRE/v73/e067101

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>