Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science of sniping on eBay, quantum experiment breakthrough, and tunable nanoresonators

23.06.2006
If you have ever tried to bid in an online auction, the chances are you have been sniped. That is, someone came along and placed a high bid just moments before the bidding deadline - eliminating your chances of outbidding them. Many people consider sniping unethical, robbing other bidders of a chance to buy an item and taking money out of sellers pockets by stifling fair competition.
Ethical or not, it turns out that sniping is the best way to win an auction. Researchers at Seoul National University have produced a model that mimics bidding behavior on eBay and a Korean auction site (auction.co.kr). The model confirms previous statistical studies of winning bidders that show that people who refrain from bidding at all until the very last seconds are much more likely to win than people who take part in earlier incremental bidding.

Although snipers miss out on occasion (if their late bids are not registered in time for the auction close) they are usually successful. Unless online auction companies adjust their rules to extend bidding deadlines when large, last second bids come in (as live auctioneers do), you are going to be better off sniping if you really must have that rare Pokemon card or Chia Pet planter.

Quantum Experiment Breakthrough: Interference of Independent Photons
R. Kaltenbaek et al.
Physical Review Letters (upcoming article, available to journalists on request)

Austrian physicists have managed the first demonstration of interference among independent photons - a phenomenon predicted decades ago, but experimentally unproven until now. The achievement is vital for future quantum computer designs as well as long distance versions of secure communication schemes that rely on quantum mechanics. Specifically, the experiment confirms that it will be possible to build quantum repeaters that transfer quantum information from one portion of a system to a remote portion, which is important if quantum computers and communications are ever to be realized.

At least one group has previously made similar claims (see PRL, 26 March 2006, http://link.aps.org/abstract/PRL/v96/e110501). In the earlier experiment, however, independent photons passed through some shared optical components, which would not be practical for physically separated portions of a real world quantum device and may lead to interactions that compromise the photons independence. The latest experiment demonstrates interference between photons that pass through completely separate sets of optical components. In addition to computational and communication applications, the experiment is an important demonstration of photon interactions that cannot be explained with classical physics, and therefore may lead to further experiments testing the foundations of quantum mechanics.

Linking quantum components together is a hot topic at the moment. At least two more PRL papers, one published this week and the other in the works, describe new quantum repeater proposals. One suggests quantum mechanically linking atoms through a mediating electron (A. T. Costa et al., http://link.aps.org/abstract/PRL/v96/e230501), another describes a quantum repeater design that relies on bright, coherent light rather than independent photons (P. van Loock et al., forthcoming PRL). Both papers are available to journalists on request.

Tunable Nanoresonators
K. Jensen et al.
Physical Review Letters, 2 June 2006
http://link.aps.org/abstract/PRL/v96/e215503

Researchers at the University of California at Berkeley (UCB) have developed a tunable, nanotube resonator that could lead to exquisitely sensitive and versatile sensors.

Nanoresonators are tiny vibrating beams, bridges or other structures. Because their resonant frequencies are highly dependent on various factors, such as their mass, length, and the stresses they are experiencing, nanoresonators make extremely sensitive measurement devices. (Recently, a nanoresonator-based scale managed to detect mass small enough to register the presence of a single bacterium.) Most nanoresonators operate at a single frequency or a very narrow band of frequencies. If a different frequency is required, you have to build a different resonator.

The UCB nanoresonators, however, are tunable because they are made of telescoping nanotubes that can extend like a trombone slide. By securing the telescoping nanotubes between two surfaces that can be moved relative to each other, the researchers were able to vary the nanoresonator frequencies over ranges of 50 to 75 megahertz. Each nanometer change in length leads to roughly a 1 megahertz shift in frequency, making the nanoresonators highly sensitive position and force sensors as well as tunable mass and frequency measurement devices.

Bidding Last Minute is Best on eBay
I. Yang and B. Kahng
Physical Review E, June 2006
http://link.aps.org/abstract/PRE/v73/e067101

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>