Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles – Power to be Reckoned With

23.06.2006
The University of Leicester is the co-ordinating partner in an international project involving information that can be stored on nano-particles.

The project, entitled Nanospin, aims to use the novel properties of nanoparticles in the building of new materials and devices and, looking even further ahead, to functionalise the nanoparticles themselves, by making them from more than one element, or as core-shell structures, so that each is able to become a device.

A simple example is a magnetic nanoparticle that can store a single data bit of information by defining the direction of its magnetisation. The data storage density of modern computer disks is impressive but if it becomes possible to store each data bit on a single nanoparticle, then storage densities 100 times greater could be achieved. To put this into context, such a nanoparticle medium could store about 2 million books, or a large library, on an area the size of a postage stamp.

The Nanospin partnership involves the Universities of Leicester, Reading and Surrey (UK), NCSR “Demokritos” (Athens, Greece), Sumy State University (Ukraine), CNR-ISM Rome (Italy), Universitat de Barcelona (Spain) and NT-MDT Co, Zelenograd (Russian Federation).

Chris Binns, Professor of Nanoscience in the Department of Physics and Astronomy at the University of Leicester, commented:

“Nanotechnology, that is, the use of structures whose dimensions are on the nanometre scale to build new materials and devices, appears to hold the key to future developments in a wide range of technologies, including materials, science, information technology and healthcare.

“An important aspect of nanotechnology is the recognition that sufficiently small pieces of matter (nanoparticles) have electronic magnetic and optical properties that are different from the bulk material.

“In addition, their properties are size-dependent and so nanoparticles can be considered as new building blocks of matter or ‘giant atoms’, whose properties can be tailored.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>