Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoparticles – Power to be Reckoned With

The University of Leicester is the co-ordinating partner in an international project involving information that can be stored on nano-particles.

The project, entitled Nanospin, aims to use the novel properties of nanoparticles in the building of new materials and devices and, looking even further ahead, to functionalise the nanoparticles themselves, by making them from more than one element, or as core-shell structures, so that each is able to become a device.

A simple example is a magnetic nanoparticle that can store a single data bit of information by defining the direction of its magnetisation. The data storage density of modern computer disks is impressive but if it becomes possible to store each data bit on a single nanoparticle, then storage densities 100 times greater could be achieved. To put this into context, such a nanoparticle medium could store about 2 million books, or a large library, on an area the size of a postage stamp.

The Nanospin partnership involves the Universities of Leicester, Reading and Surrey (UK), NCSR “Demokritos” (Athens, Greece), Sumy State University (Ukraine), CNR-ISM Rome (Italy), Universitat de Barcelona (Spain) and NT-MDT Co, Zelenograd (Russian Federation).

Chris Binns, Professor of Nanoscience in the Department of Physics and Astronomy at the University of Leicester, commented:

“Nanotechnology, that is, the use of structures whose dimensions are on the nanometre scale to build new materials and devices, appears to hold the key to future developments in a wide range of technologies, including materials, science, information technology and healthcare.

“An important aspect of nanotechnology is the recognition that sufficiently small pieces of matter (nanoparticles) have electronic magnetic and optical properties that are different from the bulk material.

“In addition, their properties are size-dependent and so nanoparticles can be considered as new building blocks of matter or ‘giant atoms’, whose properties can be tailored.”

Alex Jelley | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>