Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles – Power to be Reckoned With

23.06.2006
The University of Leicester is the co-ordinating partner in an international project involving information that can be stored on nano-particles.

The project, entitled Nanospin, aims to use the novel properties of nanoparticles in the building of new materials and devices and, looking even further ahead, to functionalise the nanoparticles themselves, by making them from more than one element, or as core-shell structures, so that each is able to become a device.

A simple example is a magnetic nanoparticle that can store a single data bit of information by defining the direction of its magnetisation. The data storage density of modern computer disks is impressive but if it becomes possible to store each data bit on a single nanoparticle, then storage densities 100 times greater could be achieved. To put this into context, such a nanoparticle medium could store about 2 million books, or a large library, on an area the size of a postage stamp.

The Nanospin partnership involves the Universities of Leicester, Reading and Surrey (UK), NCSR “Demokritos” (Athens, Greece), Sumy State University (Ukraine), CNR-ISM Rome (Italy), Universitat de Barcelona (Spain) and NT-MDT Co, Zelenograd (Russian Federation).

Chris Binns, Professor of Nanoscience in the Department of Physics and Astronomy at the University of Leicester, commented:

“Nanotechnology, that is, the use of structures whose dimensions are on the nanometre scale to build new materials and devices, appears to hold the key to future developments in a wide range of technologies, including materials, science, information technology and healthcare.

“An important aspect of nanotechnology is the recognition that sufficiently small pieces of matter (nanoparticles) have electronic magnetic and optical properties that are different from the bulk material.

“In addition, their properties are size-dependent and so nanoparticles can be considered as new building blocks of matter or ‘giant atoms’, whose properties can be tailored.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>