Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What can a magnet tell you about rain patterns? More than you would guess

22.06.2006
If someone said you can understand rain patterns and the dynamics of the atmosphere by studying magnets and magnetism -- and therefore make better predictions of the effects of global warming -- would you think he's crazy? Brilliant? The atmosphere spans the entire globe, while a magnet fits easily in your hand; can they really be so similar?

Ole Peters, a 27-year-old physicist with expertise in "critical phenomena" and "self organized criticality" -- which he acknowledges is "a bit of a rogue field" -- doesn't sound the least bit crazy.

In the June issue of the respected journal Nature Physics, he and J. David Neelin, UCLA professor of atmospheric and oceanic sciences, report that the onset of intense tropical rain and magnetism share the same underlying physics.

Peters and Neelin analyzed statistical properties of the relationship between water vapor in the atmosphere in the tropics and rainfall, using remote sensing from a satellite over the tropical oceans.

"We studied properties of that relationship that are also observed in equivalent quantities for systems with 'continuous-phase transitions' like magnets," said Peters, a research scientist with UCLA's Institute of Geophysics and Planetary Physics and a visiting scientist at the Santa Fe Institute.

"The atmosphere has a tendency to move to a critical point in water vapor where the likelihood of rain dramatically increases. The system reaches a point where it's just about to rain; it's highly susceptible. Any additional water vapor can produce a large response."

Finding the simple predictions of this statement confirmed in a complex meteorological system is unexpected, and may lead to more accurate climate models, Peters and Neelin said.

Neelin is working to incorporate these findings into models for atmospheric dynamics. Predicting the effects of global warming on precipitation is currently difficult to assess, he said.

"Global climate computer simulations make assumptions about how rainfall depends on moisture and temperature that are imperfect approximations," said Neelin, a member of UCLA's Institute of Geophysics and Planetary Physics. "This research may lead to improved ways of treating rainfall in these models, which could help scientists improve rain prediction in daily weather or how it might change under global warming."

"Our study showed that absolutely everything we dreamed of finding was actually there," Peters said. "The predictions from critical phenomena showed up in the data. This is a huge step forward in self-organized criticality and critical phenomena. There really is a critical point. We observed the system in a whole range of different water vapors. This is the strongest evidence for any physical self-organized critical system to really have a critical point."

How does a critical threshold point work?

Consider a pile of rice, Peters said. You can add a single grain of rice and measure its effect on the pile. After slowly adding rice grains, at some point you eventually trigger an avalanche; the release is very fast. A similar principle is behind the coin machines you can find in casinos, where it looks as if dropping in one or two quarters will create an avalanche of coins that will come crashing down for you. In fact, it is much more likely that it only looks like the system is at a critical point; you are more likely to lose your quarter.

Imagine that you add one raindrop into a cloud. Like the pile of rice, where adding a single grain can produce an avalanche or nothing at all, or like the coin machine, the one additional raindrop could trigger a huge downpour, but most of the time produces nothing. You can heat a magnet to a point where it loses its magnetization; it no longer has a north and south direction.

"When a magnet is near the critical temperature, a slight perturbation can cause it to switch north and south," Peters said. "When the system reaches the critical point and is so susceptible, a slight change -- one more grain of rice, one more coin -- can produce a massive response of the system. This phenomenon can be studied using statistical mechanics and critical phenomena."

The sun slowly evaporates water from the oceans, pumping water into the atmosphere. Much of that water vapor is stored and transported in the atmosphere before there is any rain, Neelin noted.

What finally triggers the rain?

Peters and Neelin were able to tie their findings back to seminal work in the 1970s at UCLA by Akio Arakawa, who sought to connect what is known about individual clouds to larger-scale atmospheric motions. As these motions increase water vapor in some regions, clouds begin to rise, heated by the condensing rainwater. Arakawa postulated a balance between the clouds and the large scale. But if the clouds were reacting smoothly to the large-scale flow, rain would be much more predictable than it is.

"Arakawa's work was amazingly far-sighted," Neelin said, "but there's a new twist."

Complex interactions among the cloud motions organize the rainfall into clusters in space and a cascade of smaller and larger rain events. And these share the same mathematical structure as systems that physicists have studied.

"It's very hard to predict rainfall because of this type of interaction," Peters said. "In the last 20 years, scientists have become much better at predicting temperature and wind, but predicting precipitation has not improved much.

"Whenever you find different systems that are governed by the same mathematical laws, you are hitting on something fundamental. You have found a thread in the mathematical fabric of reality. This study raises the concept of 'self-organized criticality' to a higher status. It's not just a far-fetched possibility."

The research is federally funded by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Peters began studying "avalanche distributions" in 2002, measuring how much rain falls in one storm. This led him to make predictions about the functional relationship between water vapor and rainfall.

"It's a self-organized critical system, from which we can make predictions," said Peters, who described physics as "beautiful."

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>