Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster makes an effervescent discovery

21.06.2006
Space is fizzing. Above our heads, where the Earth’s magnetic field meets the constant stream of gas from the Sun, thousands of bubbles of superheated gas are constantly growing and popping.

Their discovery could allow scientists to finally understand the interaction between the solar wind and the Earth’s magnetic field.

This exciting new view of near-Earth space has been made possible by ESA’s four-spacecraft flotilla, Cluster, and Double Star, ESA’s collaborative space mission with China. The spacecraft encounter the bubbles every time they are on the day-lit side of the Earth, at altitudes of between 13 and 19 Earth radii.

The bubbles, known as density holes, are regions of space where the density of gas suddenly falls by ten times but the temperature of the remaining gas leaps from 100 000 ºC to 10 000 000 ºC.

When Cluster first flew through the bubbles, George Parks, University of California, Berkeley, thought that they were just instrumentation glitches. "Then I looked at the data from all four Cluster spacecraft. These anomalies were being observed simultaneously by all the spacecraft. That’s when I believed that they were real," says Parks.

Somewhat similar bubbles have occasionally been encountered in the past by other spacecraft. They were called hot flow anomalies but Parks decided the bubbles he saw are significantly different.

He found their signature in Double Star data too. During every orbit, the spacecraft usually fly through 20–40 bubbles. By carefully correlating the different spacecraft readings, Parks and his collaborators learnt that the bubbles expand to about 1 000 kilometres and probably last about 10 seconds before bursting and being replaced by the cooler, denser solar wind.

The energy source to drive these bubbles is currently uncertain but there is strong circumstantial evidence that the collision of the solar wind with the Earth’s magnetic field, which forms a boundary known as the bow shock, is probably creating the energy to drive them.

Bow shocks exist throughout nature. The familiar place is at the front of a ship; the bow shock is the swell of white water that builds up and precedes the boat. Another is in supersonic air travel. As an aircraft flies faster than the speed of sound, the sound waves pile up in front of the plane. That energy is finally dissipated in the sonic boom that occurs.

The bow shock between the Earth’s magnetic field and the solar wind is similar in many respects. The big difference is that scientists do not know how the energy in the magnetic bow shock is dissipated. This is to say they do not know what the equivalent of the sonic boom is. The newly discovered bubbles might provide a clue.

It is possible that they are caused by the energy that piles up at the bow shock – however, being certain is a long way off yet.

"For now, our job is to study them as thoroughly as possible. Then we will try to simulate them on computers and finally we will know what effect they have," concludes Parks.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMX66L8IOE_index_0.html

More articles from Physics and Astronomy:

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

nachricht Next-generation optics offer the widest real-time views of vast regions of the sun
11.01.2017 | New Jersey Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>