Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster makes an effervescent discovery

21.06.2006
Space is fizzing. Above our heads, where the Earth’s magnetic field meets the constant stream of gas from the Sun, thousands of bubbles of superheated gas are constantly growing and popping.

Their discovery could allow scientists to finally understand the interaction between the solar wind and the Earth’s magnetic field.

This exciting new view of near-Earth space has been made possible by ESA’s four-spacecraft flotilla, Cluster, and Double Star, ESA’s collaborative space mission with China. The spacecraft encounter the bubbles every time they are on the day-lit side of the Earth, at altitudes of between 13 and 19 Earth radii.

The bubbles, known as density holes, are regions of space where the density of gas suddenly falls by ten times but the temperature of the remaining gas leaps from 100 000 ºC to 10 000 000 ºC.

When Cluster first flew through the bubbles, George Parks, University of California, Berkeley, thought that they were just instrumentation glitches. "Then I looked at the data from all four Cluster spacecraft. These anomalies were being observed simultaneously by all the spacecraft. That’s when I believed that they were real," says Parks.

Somewhat similar bubbles have occasionally been encountered in the past by other spacecraft. They were called hot flow anomalies but Parks decided the bubbles he saw are significantly different.

He found their signature in Double Star data too. During every orbit, the spacecraft usually fly through 20–40 bubbles. By carefully correlating the different spacecraft readings, Parks and his collaborators learnt that the bubbles expand to about 1 000 kilometres and probably last about 10 seconds before bursting and being replaced by the cooler, denser solar wind.

The energy source to drive these bubbles is currently uncertain but there is strong circumstantial evidence that the collision of the solar wind with the Earth’s magnetic field, which forms a boundary known as the bow shock, is probably creating the energy to drive them.

Bow shocks exist throughout nature. The familiar place is at the front of a ship; the bow shock is the swell of white water that builds up and precedes the boat. Another is in supersonic air travel. As an aircraft flies faster than the speed of sound, the sound waves pile up in front of the plane. That energy is finally dissipated in the sonic boom that occurs.

The bow shock between the Earth’s magnetic field and the solar wind is similar in many respects. The big difference is that scientists do not know how the energy in the magnetic bow shock is dissipated. This is to say they do not know what the equivalent of the sonic boom is. The newly discovered bubbles might provide a clue.

It is possible that they are caused by the energy that piles up at the bow shock – however, being certain is a long way off yet.

"For now, our job is to study them as thoroughly as possible. Then we will try to simulate them on computers and finally we will know what effect they have," concludes Parks.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMX66L8IOE_index_0.html

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>