Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pamela goes to Space: it will explore antimatter and dark matter to unravel the mysteries of the universe

13.06.2006
Searching for antimatter and dark matter in Space: this is Pamela’s mission. Pamela will be launched into orbit on June 15th from the cosmodrome of Baikonur, in Kazakhstan. The launch will take place at 11.00 am local time ( 6.00 am Italian time).

Pamela, (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) will stay in Space for at least three years, on a quasi-polar elliptic orbit between 300 and 600 kilometres from the ground. Pamela is the result of a collaboration among Russian research institutes, Russian Space Agency and the Italian National Institute for Nuclear Physics, with the participation of Italian Space Agency and the contribution of German and Swedish space agencies and universities.

Antimatter and dark matter are some of the most controversial and fascinating issues that modern physics is facing. Actually, today we know that 5% only of the universe is constituted of the matter which is familiar to us, that is to say the one made up of protons, neutrons end electrons. It is estimated that 70% of what exists in the cosmos is constituted of an invisible and homogenous substance called “dark energy”. The remaining 25% would be instead composed of dark matter, constituted of particles which are very different from ordinary matter. These particles, still unknown under certain respects, don’t aggregate in celestial bodies. Antimatter is very rare in our universe, but according to the most reliable theories, after the Big Bang there was the same amount of antimatter and matter. Afterward, matter and antimatter would have been annihilated almost at once in a burst of energy. Surprisingly, a very little percentage of matter was left over from this process: such a small quantity of matter now forms stars, planets, ourselves and everything we know. If the amount of antimatter was the same as the amount of matter, why did only a part of matter remain? What is the difference between the two? Casting light on these questions will be part of the challenges that Pamela is going to face into Space. But how will it do it?

Pamela will investigate on dark matter and antimatter by studying cosmic rays: energetic particles of different nature coming from Space and carrying important information on the cosmic source that generated them, and as a consequence, on its origin and evolution. In particular Pamela will measure flux, energy and characteristics of galactic, interplanetary and solar cosmic rays with a precision never reached before.

The instrument is nearly 500 kilos, its dimensions are the ones of a parallelepipedon 1.3 metres tall with a square base whose side is 75 centimetres long. It is essentially composed of a large magnet equipped with a remarkable number of detectors which can identify the particles that cosmic rays are made up of, can trace their trajectories and measure their energy. Finally, sophisticated electronic devices for detectors’ reading, equipment management, and connection with communication systems of the satellite complete the apparatus.

Thanks to the sophisticated equipment of Pamela, it will be possible for the first time to make long period observations, avoiding atmosphere interference, with which cosmic rays interact. Only instruments settled on stratospheric balloon, and once also on the Space Shuttle, traced this kind of data, but only for a short period.

“The launch of Pamela is a very exciting moment for the whole collaboration. It represents the crowning achievement of long years of study realized by a large number of researchers, mainly young. At the moment, Pamela is the most advanced instrument for this field of astrophysics. When Pamela will get into orbit, the second and most amazing part of its scientific adventure will begin, with the aim of discovering some of the most intriguing and complex mysteries of the universe” says Piegiorgio Picozza, director of Inf section of Tor Vergata, who coordinated the activity of Infn sections of Florence, Naples, Trieste, Bari, National Laboratories of Frascati, and of the international collaboration.

Simonetta Di Pippo, director of the Observation of the universe department at Italian Space Agency and actual president of the joined committee Asi/Infn, comments on the forthcoming launch: “Pamela is inserted in a very rich set of experiments and mission at Asi. This is a strategic line outlined in the National Aerospace Plan which intends to study high energy particles using the most powerful accelerator we have: our universe. I am talking about Swift, in orbit since a year and a half with a very strong contribution of Asi. And I am talking about the Ams observatory , which is the result of a collaboration with several countries. Amongst them Italy, with Asi and Infn, has a very important position. We have a strong synergy with Infn: we also collaborated for Glast, the Nasa observatory that will be launched next year. In this project Italy contributed with the 16 silicon towers of Lat (Large Area Telescope), again with Infn. A very important and surely successful collaboration. We expect many important results from the Pamela mission”.

Piergiorgio Picozza | alfa
Further information:
http://www.roma2.infn.it
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>