Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pamela goes to Space: it will explore antimatter and dark matter to unravel the mysteries of the universe

Searching for antimatter and dark matter in Space: this is Pamela’s mission. Pamela will be launched into orbit on June 15th from the cosmodrome of Baikonur, in Kazakhstan. The launch will take place at 11.00 am local time ( 6.00 am Italian time).

Pamela, (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) will stay in Space for at least three years, on a quasi-polar elliptic orbit between 300 and 600 kilometres from the ground. Pamela is the result of a collaboration among Russian research institutes, Russian Space Agency and the Italian National Institute for Nuclear Physics, with the participation of Italian Space Agency and the contribution of German and Swedish space agencies and universities.

Antimatter and dark matter are some of the most controversial and fascinating issues that modern physics is facing. Actually, today we know that 5% only of the universe is constituted of the matter which is familiar to us, that is to say the one made up of protons, neutrons end electrons. It is estimated that 70% of what exists in the cosmos is constituted of an invisible and homogenous substance called “dark energy”. The remaining 25% would be instead composed of dark matter, constituted of particles which are very different from ordinary matter. These particles, still unknown under certain respects, don’t aggregate in celestial bodies. Antimatter is very rare in our universe, but according to the most reliable theories, after the Big Bang there was the same amount of antimatter and matter. Afterward, matter and antimatter would have been annihilated almost at once in a burst of energy. Surprisingly, a very little percentage of matter was left over from this process: such a small quantity of matter now forms stars, planets, ourselves and everything we know. If the amount of antimatter was the same as the amount of matter, why did only a part of matter remain? What is the difference between the two? Casting light on these questions will be part of the challenges that Pamela is going to face into Space. But how will it do it?

Pamela will investigate on dark matter and antimatter by studying cosmic rays: energetic particles of different nature coming from Space and carrying important information on the cosmic source that generated them, and as a consequence, on its origin and evolution. In particular Pamela will measure flux, energy and characteristics of galactic, interplanetary and solar cosmic rays with a precision never reached before.

The instrument is nearly 500 kilos, its dimensions are the ones of a parallelepipedon 1.3 metres tall with a square base whose side is 75 centimetres long. It is essentially composed of a large magnet equipped with a remarkable number of detectors which can identify the particles that cosmic rays are made up of, can trace their trajectories and measure their energy. Finally, sophisticated electronic devices for detectors’ reading, equipment management, and connection with communication systems of the satellite complete the apparatus.

Thanks to the sophisticated equipment of Pamela, it will be possible for the first time to make long period observations, avoiding atmosphere interference, with which cosmic rays interact. Only instruments settled on stratospheric balloon, and once also on the Space Shuttle, traced this kind of data, but only for a short period.

“The launch of Pamela is a very exciting moment for the whole collaboration. It represents the crowning achievement of long years of study realized by a large number of researchers, mainly young. At the moment, Pamela is the most advanced instrument for this field of astrophysics. When Pamela will get into orbit, the second and most amazing part of its scientific adventure will begin, with the aim of discovering some of the most intriguing and complex mysteries of the universe” says Piegiorgio Picozza, director of Inf section of Tor Vergata, who coordinated the activity of Infn sections of Florence, Naples, Trieste, Bari, National Laboratories of Frascati, and of the international collaboration.

Simonetta Di Pippo, director of the Observation of the universe department at Italian Space Agency and actual president of the joined committee Asi/Infn, comments on the forthcoming launch: “Pamela is inserted in a very rich set of experiments and mission at Asi. This is a strategic line outlined in the National Aerospace Plan which intends to study high energy particles using the most powerful accelerator we have: our universe. I am talking about Swift, in orbit since a year and a half with a very strong contribution of Asi. And I am talking about the Ams observatory , which is the result of a collaboration with several countries. Amongst them Italy, with Asi and Infn, has a very important position. We have a strong synergy with Infn: we also collaborated for Glast, the Nasa observatory that will be launched next year. In this project Italy contributed with the 16 silicon towers of Lat (Large Area Telescope), again with Infn. A very important and surely successful collaboration. We expect many important results from the Pamela mission”.

Piergiorgio Picozza | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>