Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space is dusty, and now astronomers know why

12.06.2006
Massive star supernovae have been major "dust factories" ever since the first generations of stars formed several hundred million years after the Big Bang, according to an international study published in Science Express today.

The scientific team trained their telescopes on Supernova 2003gd, which exploded in the NGC 628 spiral galaxy 30 million light-years from Earth. The light from the 2003gd first reached Earth on March 17, 2003. At its brightest, it could be seen in an amateur astronomer's telescope. While many supernovae are discovered each year, this particular one stood out because it was relatively nearby and could be followed for a longer-than-usual time by the specialized infrared detectors of the Spitzer Space Telescope, and by a spectrograph on the Gemini North telescope. "2003gd is, quite literally, the smoking gun," says Doug Welch, professor, physics & astronomy at McMaster University, and one of 17 astronomers involved in the study. "These carbon and silicon dust particles which form from the supernovae blast make possible the many generations of high-mass stars and all the heavy elements they produce. These are elements which make up the bulk of everything around us on Earth, including you and me."

Welch and co-author Geoff Clayton of Louisiana State University, visited the Gemini North telescope in Hawaii to take spectra of ancient massive star supernovae in their hunt for the formation of dust.

Making space dust requires elements heavier than hydrogen and helium – the only elements in existence after the Big Bang. Once dust is available stars form much more quickly and efficiently. Up until now, the efficiency and rapidity of the creation of dust by massive star supernovae has been unknown.

"We have finally shown that supernovae could have been major contributors to the dust present in the early Universe," said Ben Sugerman, of the Space Telescope Science Institute in Baltimore, MD. "Until now, the available evidence has pointed to the contrary."

Supernovae expand and dissipate into space quickly, so scientists require extremely sensitive telescopes to study them even a few months after the initial explosion. Dust does not begin to form until two years after an explosion, so while astronomers have suspected that most supernovae do produce dust, their ability to confirm this stellar dust production in the past was limited by the available technology.

The study utilized Hubble Space Telescope data as well as new observations from the Spitzer Space Telescope (currently trailing the Earth along its orbit) and the Gemini North telescope of the Gemini Observatory on Mauna Kea, Hawaii.

"This work demonstrates the enormous value of working in different parts of the spectrum and the critical need for both ground-based and space-based facilities," says Welch.

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>