Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive-star supernovae found to be major space dust factories

09.06.2006
An unaccounted for source of space dust which spawns life in the universe has been identified by an international team of scientists.

They report in Science Express that Type II supernovae – where a massive star comes to the end of its life and releases its cataclysmic energy – are the culprits.

Space dust is composed of small particles, made of elements such as carbon, silicon, magnesium, iron and oxygen, which are the building blocks from which the earth was made. Until recently, it was thought that this dust was mainly formed by old sun-like stars known as red giants. But the amount of dust found in young galaxies in the early universe seems unlikely to be due to old stars.

Supernovae produced by short-lived massive stars have long been suspected as the dust factories but they are fairly rare events that only happen approximately once every hundred years in a galaxy, making it harder for researchers to find and analyse whether dust is formed in their aftermath.

NASA's Spitzer Space Telescope allowed the researchers to peer further into the universe, allowing them to observe a supernova whose explosion was discovered in 2003 in the spiral galaxy Messier 74, which is approximately 30 million light-years away. Their results suggest for the first time that dust can form efficiently in supernovae, using up about five per cent of the heavy elements available.

Professor Mike Barlow, of the UCL Department of Physics & Astronomy and one of the authors of the study, says: "Dust particles in space are the building blocks of comets, planets and life, yet our knowledge of where this dust was made is still incomplete. These new observations show that supernovae can make a major contribution to enriching the dust content of the universe."

The researchers used the space-based Spitzer and Hubble telescopes and the ground-based Gemini North Telescope atop Mauna Kea in Hawaii. The study was led by Dr Ben Sugerman of the Space Telescope Science Institute in Baltimore, and members of the Survey for the Evolution of Emission from Dust in Supernovae (SEEDS) collaboration, which is led by Professor Barlow.

Although researchers have detected many supernovae in the past at visible wavelengths, supernova 2003gd is only one of three in the universe that have been seen at infrared wavelengths producing dust. Supernovae dim and expand into space fairly quickly, so scientists require extremely sensitive telescopes to study them even a few months after the initial explosion. While astronomers have suspected that most supernovae do produce dust, their ability to study this dust production in the past has been limited by technology.

As dust condenses in supernova ejections it produces three observable phenomena: (1) emission at infrared wavelengths; (2) an increase in obscuration of the supernova's light at visible wavelengths; (3) greater obscuration by the newly formed dust of emission from gas that is expanding away from us, on the far side of the supernova, than from gas expanding towards us, at the front of the supernova.

"One of the difficulties in trying to detect infrared emissions from distant galaxies is the extreme sensitivity of the detectors to heat from other sources," explains Professor Barlow.

"Infrared is primarily heat radiation, so the Spitzer Space Telescope must be cooled to near absolute zero (-273 degrees Celsius) so that it can observe infrared signals from space without interference from the telescope's own heat."

Infrared measurements of supernova 2003gd made 500-700 days after the outburst revealed emission consistent with newly formed cooling dust. Sophisticated modelling of the observed infrared emission and of the measured obscuration at visible wavelengths implied that solid dust particles equivalent to up to seven thousand earth masses had formed.

Dr Ben Sugerman, of the Space Telescope Science Institute in Baltimore who led the study, says: "People have suspected for 40 years that supernovae could be producers of dust, but the technology to confirm this has only recently become available. The advantage of using Spitzer is that we can actually see the warm dust as it forms."

Professor Robert Kennicutt, of the University of Cambridge's Institute of Astronomy and a co-author of the study, added: "These results provide an impressive demonstration of how Spitzer observations of supernovae can provide unique new insights into the processes that produce dust in the universe."

Judith H Moore | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>