Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious carbon excess found in infant solar system

08.06.2006


Washington, D.C. Astronomers detected unusually high quantities of carbon, the basis of all terrestrial life, in an infant solar system around nearby star Beta Pictoris, 63 light-years away. "For years we’ve looked to this early forming solar system as one that might be going through the same processes our own solar system did when the rocky planets, including Earth, were forming," commented lead author Aki Roberge,* who began the research while at Carnegie’s Department of Terrestrial Magnetism. "But we got a big surprise--there is much more carbon gas than we expected. Something very different is going on." The research, published in the June 8, 2006, Nature, suggests that either carbon-rich asteroids or comets, unlike any in our own solar system, have vaporized, or that bodies outgassing carbon-bearing species such as methane contribute the curious carbon excess.

Dusty, gaseous disks around stars are the birthplaces of planetary systems. Carnegie researcher Alycia Weinberger, co-author of the study, explains: "Since we can’t observe our own solar system as it was 4.5 billion years ago, we look at young stars to learn about the evolution of planet-forming disks. Ultimately, we want to understand the environments and processes around other stars that lead to the rise of life."

The new research was made possible by FUSE--NASA’s Far Ultraviolet Spectroscopic Explorer--and data from the Hubble Space Telescope’s imaging spectrograph. Beta Pictoris is almost twice the mass of our Sun and between 8 and 20 million years old. Previous studies indicated that the gas around the star had a composition of elements very similar to that in our own solar system. The new measurements mark the "most complete inventory of gas in any debris disk," and may radically change the picture.



"Astronomers have been puzzled by the very existence of the gaseous disk for some time," commented Roberge. "The star’s radiation should blow the gas away, so we should not be able to see gas orbiting the star at all." For a long time it was thought that maybe there was a hidden mass of gas, perhaps hydrogen, which braked the outflow, just as water slows a swimmer. Now, the authors think the mystery braking material is the ionized carbon (atoms which have lost an electron giving them a net positive charge). Ions attract and repel each other due to electrostatic force. Carbon is not blown away from the star, so the ionized carbon seen is very good at slowing down the other gaseous ions.

What the data do not answer, however, is what put the carbon there in the first place. The astronomers compared the elemental composition of the gas with that of dust from Halley’s Comet, a very old type of meteorite, and the elemental abundances of our Sun. "It didn’t match up at all," remarked Roberge.

The surprisingly carbon-rich gas points in two possible directions. The asteroids and comets orbiting Beta Pictoris might contain large amounts of carbon-rich material like graphite and methane. Planets that formed out of such bodies would be very different from those in the solar system, and might have methane-rich atmospheres, like Titan, a moon of Saturn. Or the Beta Pictoris asteroids and comets might be just like the ones in our solar system when they were young. At that time, they might have contained much more organic material than asteroids and comets appear to today. If so, more of the building blocks of life were delivered to the early Earth than was previously thought.

Commenting on how to determine where the carbon originated, Weinberger noted: "If we could figure out how carbon-rich the dust near the star is, which may be possible with future large infrared telescopes, we could figure out if the dust is a plausible source of the carbon." In a break-up of a planetesimal, all the elements found in meteorites would be produced, so the dust would match that of a meteorite. These collisions are almost certainly happening in the portion of the Beta Pictoris disk near the star. Icy bodies, fairly far from the star, could be losing volatile methane, but not water. And this would enrich the disk in carbon and hydrogen.

Are systems like Beta Pictoris common or rare? This information would help scientists to better understand the implications of the current work. Beta Pictoris is by far the best-studied disk of its kind and the only one in which the gas has been observed in this much detail. This situation will very likely remain the case until the advent of a future ultraviolet space telescope, or large ground-based telescope facilities operating at radio wavelengths, such as the Atacama Large Millimeter Array, scheduled for completion in 2012.

Aki Roberge | EurekAlert!
Further information:
http://www.nasa.gov/goddard
http://www.carnegieinstitution.org/

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>