Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious carbon excess found in infant solar system

08.06.2006


Washington, D.C. Astronomers detected unusually high quantities of carbon, the basis of all terrestrial life, in an infant solar system around nearby star Beta Pictoris, 63 light-years away. "For years we’ve looked to this early forming solar system as one that might be going through the same processes our own solar system did when the rocky planets, including Earth, were forming," commented lead author Aki Roberge,* who began the research while at Carnegie’s Department of Terrestrial Magnetism. "But we got a big surprise--there is much more carbon gas than we expected. Something very different is going on." The research, published in the June 8, 2006, Nature, suggests that either carbon-rich asteroids or comets, unlike any in our own solar system, have vaporized, or that bodies outgassing carbon-bearing species such as methane contribute the curious carbon excess.

Dusty, gaseous disks around stars are the birthplaces of planetary systems. Carnegie researcher Alycia Weinberger, co-author of the study, explains: "Since we can’t observe our own solar system as it was 4.5 billion years ago, we look at young stars to learn about the evolution of planet-forming disks. Ultimately, we want to understand the environments and processes around other stars that lead to the rise of life."

The new research was made possible by FUSE--NASA’s Far Ultraviolet Spectroscopic Explorer--and data from the Hubble Space Telescope’s imaging spectrograph. Beta Pictoris is almost twice the mass of our Sun and between 8 and 20 million years old. Previous studies indicated that the gas around the star had a composition of elements very similar to that in our own solar system. The new measurements mark the "most complete inventory of gas in any debris disk," and may radically change the picture.



"Astronomers have been puzzled by the very existence of the gaseous disk for some time," commented Roberge. "The star’s radiation should blow the gas away, so we should not be able to see gas orbiting the star at all." For a long time it was thought that maybe there was a hidden mass of gas, perhaps hydrogen, which braked the outflow, just as water slows a swimmer. Now, the authors think the mystery braking material is the ionized carbon (atoms which have lost an electron giving them a net positive charge). Ions attract and repel each other due to electrostatic force. Carbon is not blown away from the star, so the ionized carbon seen is very good at slowing down the other gaseous ions.

What the data do not answer, however, is what put the carbon there in the first place. The astronomers compared the elemental composition of the gas with that of dust from Halley’s Comet, a very old type of meteorite, and the elemental abundances of our Sun. "It didn’t match up at all," remarked Roberge.

The surprisingly carbon-rich gas points in two possible directions. The asteroids and comets orbiting Beta Pictoris might contain large amounts of carbon-rich material like graphite and methane. Planets that formed out of such bodies would be very different from those in the solar system, and might have methane-rich atmospheres, like Titan, a moon of Saturn. Or the Beta Pictoris asteroids and comets might be just like the ones in our solar system when they were young. At that time, they might have contained much more organic material than asteroids and comets appear to today. If so, more of the building blocks of life were delivered to the early Earth than was previously thought.

Commenting on how to determine where the carbon originated, Weinberger noted: "If we could figure out how carbon-rich the dust near the star is, which may be possible with future large infrared telescopes, we could figure out if the dust is a plausible source of the carbon." In a break-up of a planetesimal, all the elements found in meteorites would be produced, so the dust would match that of a meteorite. These collisions are almost certainly happening in the portion of the Beta Pictoris disk near the star. Icy bodies, fairly far from the star, could be losing volatile methane, but not water. And this would enrich the disk in carbon and hydrogen.

Are systems like Beta Pictoris common or rare? This information would help scientists to better understand the implications of the current work. Beta Pictoris is by far the best-studied disk of its kind and the only one in which the gas has been observed in this much detail. This situation will very likely remain the case until the advent of a future ultraviolet space telescope, or large ground-based telescope facilities operating at radio wavelengths, such as the Atacama Large Millimeter Array, scheduled for completion in 2012.

Aki Roberge | EurekAlert!
Further information:
http://www.nasa.gov/goddard
http://www.carnegieinstitution.org/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>