Protein’s role in regulating cell death sets direction for Alzheimer’s, Parkinson’s and cancer research

A protein called calpain can be the key to either preventing or promoting the cell death, a Queen’s University study has found.

“This work provides proof in principle that pharmacological inhibition of calpain may be used to block cell death in situations where this is not desirable, such as in neuronal cells of Alzheimer’s or Parkinson’s patients, but to promote cell death in cancer cells where this is clearly a very desirable outcome,” says lead researcher Peter Greer of two studies appearing in the Journal of Biological Chemistry (JBC).

Dr. Greer is a Professor of Pathology and Molecular Medicine with the Cancer Biology and Genetics division of Queen’s University’s Cancer Research Institute.

“All cells in our body have the ability to trigger an intrinsic programmed cell death response. In the case of nerve cells that have been temporarily cut off from their oxygen supply because of a stroke, or damaged by amyloid deposits, this might seem like a bad thing that could contribute to neurodegenerative disease,” says Dr. Greer who produced the study with Yinfei Tan, Nathalie Dourdin, Chao Wu, Teresa De Veyra, and John S. Elce.

“On the other hand, when a cell’s chromosomes are damaged by carcinogens or ultraviolet light in a way that could initiate cancer, this same programmed cell death response could save your life.”

Supported by an operating grant from the Canadian Institute of Health Research the first study, now published online and to appear in print on June 9, showed that calpain promoted programmed cell death after cells were damaged by chemicals that disrupt the endoplasmic reticulum, which is a major synthetic structure in the cell that controls the synthesis and distribution of new proteins.

In the second study, now published in JBC online, Dr. Greer and co-investigators Yinfei Tan, Chao Wu, and Teresa De Veyra, found that calpain also inhibits programmed cell death in response to other challenges, including some chemotherapeutic drugs.

This study showed that calpain contributes to the activation of AKT and JNK, two key players in the signaling pathways that control cellular responses to different death stimuli. These discoveries suggest that calpain inhibitors might improve the ability of chemotherapeutic drugs or radiation treatment to specifically kill tumour cells in cancer patients.

Media Contact

Sarah Withrow EurekAlert!

More Information:

http://www.queensu.ca

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Peptides on Interstellar Ice

A research team led by Dr Serge Krasnokutski from the Astrophysics Laboratory at the Max Planck Institute for Astronomy at the University of Jena had already demonstrated that simple peptides…

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

Partners & Sponsors