Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space weather forecast step closer

12.12.2001


Loops of hot electrified gas above an active sunspot
© NASA/Standford University


American Geophysical Society Meeting, San Francisco, December 2001

The Sun’s violent outbursts have deep and twisted origins.


The Sun’s violent eruptions of material and magnetic energy have deep and twisted origins, researchers told this week’s American Geophysical Union Meeting in San Francisco, California.



These coronal mass ejections (CMEs) cause the aurora, seen at the Earth’s poles, and can knock out spacecraft. An understanding of what drives CMEs may one day make them possible to predict.

Radar aboard the NASA/European Space Agency spacecraft SOHO allowed a team from Stanford University in California to look beneath sunspots - dark patches on the Sun associated with CMEs.

Sunspots have been studied for centuries, but were thought to be exclusively a surface phenomenon. The researchers find that they in fact extend at least 100,000 kilometres below the Sun’s surface. "This is the first evidence that their roots go deep into the interior," says team member Alexander Kosovichev.

An examination of another sunspot by Junwei Zhao, also of Stanford, reveals magnetic field lines beneath the surface twisting around one another into bunches as the sunspot forms. "A huge amount of energy builds up in these bunches," says Zhao. When released, this would trigger a CME hurling solar material into space.

Sunspots had been observed rotating before, says Richard Nightingale, a solar physicist at Lockheed Martin in Palo Alto, California. "The coupling of above and below - that’s all new," he says.

Beneath the surface

"The interior of the Sun was simple before there were data," says Philip Scherer, who led the research. Models of the Sun’s interior assumed that buoyant hot material rose to the surface, where it was whipped up by the magnetic field lines that criss-cross the star’s exterior, forming sunspots and leading to CMEs.

Now it appears that material rising from deep within the Sun can twist magnetic field lines, giving them more energy. "Convection is being converted into magnetic fields," says Scherer.

This may produce the giant loops of overstretched magnetic fields that arch out of sunspots. The snapping of these loops releases energy, causing CMEs. Why the processes occur at specific locations is still a mystery.

The structure below the surface is currently too complicated to predict accurately, according to George Fisher, who models the Sun’s behaviour at the University of California at Berkeley. More data from sunspots may reveal patterns in the rising solar material and their interactions with magnetic field lines. "In about five years’ time we should be able to model some kind of real events," he says.

Fisher aims to use data from SOHO and future missions to model the Sun’s magnetic field completely. Then he hopes to be able to spot CMEs stirring within the Sun and to forecast the resulting weather in space.

TOM CLARKE | © Nature News Service

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>