Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling the aurora

12.12.2001


The Northern Lights: powered by an immense electrical circuit.
© Corbis


Satellites have detected the shifting forces that weave the Northern Lights.

A group of four spacecraft has given scientists their first glimpse of the immense electrical circuit above the Earth that creates the shimmering veil of the aurora borealis, or Northern Lights1.

In January 2001 the four satellites of the European Space Agency’s Cluster mission encountered a beam of electrons moving away from the Earth near the North Pole. The beam was on the outward-bound leg of its journey from the Sun, through the Earth’s atmosphere - where it creates the aurora - and back into space.



Passing through the beam in close succession, the satellites recorded it growing and vanishing over 200 seconds, Goran Marklund of the Royal Institute of Technology in Stockholm, Sweden, and co-workers report. Such fluctuations leave their mark in the shifting curtains of the spectacular display over the North Pole.

Auroral displays happen when the solar wind - the stream of electrically charged particles ejected from the Sun - penetrates the ionosphere, the region of the Earth’s upper atmosphere between 80 and 200 km above the ground. The edge of the planet’s magnetic field deflects most of the solar wind. But the field lines channel some particles down towards the poles.

The particles collide with molecules in the atmosphere above the North Pole, producing the glow of the aurora borealis.

The particles streaming down from the Sun are mostly negatively charged electrons. The funnel-shaped electric field at the North Pole focuses these electrons into a kind of beam. This beam generates the aurora when it enters the ionosphere, which is rich in charged particles.

Beam up

But the electrons must keep moving. The beam gets bent sideways in the auroral region so that it runs parallel to the Earth’s surface, before turning upward and streaming back into space.

It has long been thought that another, positively charged electric field draws the electrons up from the ionosphere and fires them back into space. According to this idea, the aurora is a consequence of this vast electrical circuit, in which electrons flow from a negative to a positive terminal, like those of a battery.

The aurora owes its ever-changing beauty to the inconstancy of the circuit. Solar winds ’beat’ the magnetic fields, causing them to flicker on and off.

Cluster consists of four satellites launched in 2000 - Rumba, Salsa, Samba and Tango - that orbit between 19,000 and 119,000 kilometres above the Earth, passing in and out of the planet’s magnetic field.

Previous spacecraft have detected the upward flow of electrons. But it hasn’t been possible to follow how the beam changes over time. The Cluster mission can study this because the four satellites, orbiting in formation, pass through the same region of the magnetic field at different times.

The upward beam of electrons creates a kind of ’anti-aurora’ or black aurora, sometimes visible from the ground as black patches or rings in the Northern Lights.

References

  1. Marklund, G. T. et al. Temporal evolution of the electric field accelerating the electrons away from the auroral ionosphere. Nature, 414, 724 - 727, (2001).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>