Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Spin Electrons with Electricity

07.12.2001


In any computer’s hard drive, magnetic fields spin electrons this way or that. Now physicists have demonstrated that an electric field can do the same when applied to electrons in semiconductors. And unlike the older magnetic approach, their new device, called a spin gate, is capable of easily imparting a range of spin values. The team’s results, described in a report appearing today in the journal Nature, may one day help to scientists realize the ideal of spintronics—quantum computing based on electron spin states rather than charge.

David Awschalom of the University of Californa at Santa Barbara and colleagues trapped electrons in a seminconductor device made of layered gallium arsenide and aluminum gallium arsenide. By carefully adjusting the distribution of electron-transmitting aluminum across the device, they were able to create an energy barrier with sloping sides like a valley, instead of the usual box shape. When the researchers applied a voltage to the setup, the valley walls tilted like a seesaw. As electrons crossed from one material to the other through the well, quantum mechanical effects altered their spins according to how positive or negative the field was. "It’s a scalable, controllable way to manipulate the electron’s spin at the nanometer scale," Awschalom says. "Most schemes for quantum information processing require you to electrically tune the spin of the electron."

He adds that the very difficult next step would be to find a way to bind together the spin states of multiple electrons within these wells. But meeting this goal will require a lot of new physics, he says. "These devices will be a lab in which we can explore this physics."


JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/120601/3.html

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>