Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars takes its cap off

07.12.2001


Mars’ ice caps are mostly frozen carbon dioxide.
© NASA


Pits in the martian ice cap expanded over the course of a year.
© M. Malin


Mars’ polar ice caps are slowly melting.

The martian ice caps are shrinking. As they are made mostly of frozen carbon dioxide, this evaporation could trigger an increase in Mars’ own greenhouse effect.

Images from the Mars Global Surveyor spacecraft show that ice ridges and escarpments have retreated over the past two years or so. The orbiting probe has also captured the ice thickening and thinning with the passing seasons.



The reason for the change is not yet clear. But it means that Mars’ climate may be changing. "These observations," say Michael Malin and co-workers at Malin Space Science Systems in San Diego, California, "suggest that the present martian environment is neither stable nor typical of the past."

Malin and his colleagues studied photos of the two ice caps taken between October 1999 and August 20011. The pictures show ridges and pits of ice, some just a few metres wide. In some places, the edges of these features seem to have retreated by up to three metres over the observation period.

In other words, the ice caps have shrunk, irrespective of seasonal changes. The researchers estimate that if all the losses are due to evaporation of carbon dioxide, the amount of this gas in the atmosphere must be increasing by about 1% every martian decade.

Mars’ atmosphere is very thin - its pressure is less than 1% of that on Earth - and consists mostly of carbon dioxide. But enough carbon dioxide evaporating from the poles would make a big difference. Because atmospheric carbon dioxide prevents solar heat radiating back into space, it warms the planet.

Ice cycle

The Mars Global Surveyor also carries a laser altimeter, an instrument that can track changes of as little as a few centimetres in the height of the ice2.

Using this device, David Smith of NASA’s Goddard Space Flight Center in Maryland and co-workers have found that ice height at both poles changes by about a metre between summer and winter. This shows that there is a considerable reservoir of carbon dioxide in the ice caps that can be pumped to and from the atmosphere.

The researchers find that the size of the north and south polar caps seem to change by about the same amount, despite the fact that, because of the shape of Mars’ orbit, the planet’s north pole is thought to get hotter than its south.

References
  1. Malin, M. C., Caplinger, M. A. & Davis, S. D. Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science, 294, 2146 - 2148, (2001).
  2. Smith, D. E., Zuber, M. T. & Neumann, G. A. Seasonal variations of snow depth on Mars. Science, 294, 2141 - 2146, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-1.html

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>