Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find hundreds of young, distant galaxy clusters

07.06.2006


Astronomers have found the largest number of the most distant, youngest galaxy clusters yet, a feat that will help them observe the developing universe when it was less than half its current age and still in its formative stages.



The team of astronomers from the University of Florida, NASA’s Jet Propulsion Laboratory and the Lawrence Livermore National Laboratory has found nearly 300 new galaxy clusters and groups, including nearly 100 at distances of eight to 10 billion light years. The new sample, a six-fold increase in the number of known clusters and groups at such extreme distances, will allow astronomers to study very young galaxies two-thirds of the way back to when the universe is believed to have originated in the Big Bang.

The team will present its findings today in Calgary, Canada, at the American Astronomical Society’s biannual meeting.


Anthony Gonzalez, an assistant professor of astronomy at UF and one of the team of astronomers who made the discovery, likened the view of the clusters to a glimpse at the Los Angeles basin when it was still home only to a collection of dusty, small towns. By knowing what the clusters looked like eight to 10 billion years ago, the astronomers will have a better idea of where and when the first stars and galaxies formed and how they grew and changed over the universe’s full 13.7 billion- year lifespan.

“It would be like taking a snapshot of cities as they were near the beginning,” he said. “You’re watching everything fall together, so you can see some of the pieces, some of the little towns, before they become part of a giant city.”

Galaxy clusters are among the universe’s most dense places, similar to cities on Earth, and a single galaxy cluster can contain hundreds of large galaxies similar to our Milky Way.

The most massive, oldest galaxies tend to be found in galaxy clusters. This makes clusters the best place to look to determine when the first stars formed and how these galaxies grew with time. While individual galaxy clusters have previously been found at similar distances, this is the first time that such a large number of galaxy clusters has been detected so far away.

Gonzalez said the astronomers’ key step in finding the large number of clusters was to merge infrared data from NASA’s Spitzer Space telescope with existing deep optical imaging obtained by National Optical Astronomy Observatory Deep Wide-Field Survey team at Kitt Peak National Observatory in Arizona.

The team used the Spitzer telescope to make infrared mosaics, a process that was thousands of times faster than with the biggest ground-based telescopes because of the Spitzer telescope’s unique capabilities. The combined Kitt Peak and Spitzer data provided information on the distances to the galaxies, enabling the astronomers to weed out small, nearby galaxies whose light was cluttering the view between the observers and the most distant clusters. Gonzalez’s main role was to analyze the maps of massive galaxies and detect the hidden galaxy clusters.

“We’re basically getting rid of all the junk to isolate the most distant, massive galaxies,” Gonzalez said.

The research will allow astronomers to embark on several new studies, said Mark Brodwin, an astronomer at the Jet Propulsion Laboratory and the lead investigator on the team.

“Clusters of galaxies are the repositories of the most massive galaxies in the universe,” he said. “As such, our survey serves as an ideal laboratory in which to study the process of massive galaxy formation over the last two-thirds of the lifetime of the universe.”

The next step is to study the newly discovered galaxies in detail, Brodwin said. Astronomers want to learn more about their size, shape, mass and the rate at which they form new stars and merge together to form larger galaxies. “These key measurements will improve our fundamental understanding of the galaxy formation process,” he said.

NASA’s Jet Propulsion Laboratory, based in Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. JPL is a division of Caltech.

Anthony Gonzalez | EurekAlert!
Further information:
http://www.ufl.edu
http://www.astro.ufl.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>