Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy evolution in cyber universe matches astronomical observations in fine detail

07.06.2006


Scientists at the University of Chicago have bolstered the case for a popular scenario of the big bang theory that neatly explains the arrangement of galaxies throughout the universe. Their supercomputer simulation shows how dark matter, an invisible material of unknown composition, herded luminous matter in the universe from its initial smooth state into the cosmic web of galaxies and galaxy clusters that populate the universe.


This image from a supercomputer simulation of the evolution of the universe shows a cubic volume of outer space measuring approximately 280 million light years across. At this stage, the universe is 13.4 billion years old (the present). The bright dots correspond with high concentrations of dark matter, which are associated with sites of galaxy formation. The simulation shows how dark matter, an invisible material of unknown composition, herded luminous matter in the universe from its initial smooth state into the cosmic web of galaxies and galaxy clusters that populate the universe. The University of Chicago’s Andrey Kravtsov, Charlie Conroy and Risa Weschlser will describe these findings in a paper published in the June 20 issue of the Astrophysical Journal. Credit: Image courtesy of Andrey Kravtsov


This image from a supercomputer simulation of the evolution of the universe shows a cubic volume of outer space measuring approximately 280 million light years across. At this stage, the universe was 470 million years old. The bright dots correspond with high concentrations of dark matter, which are associated with sites of galaxy formation. The simulation shows how dark matter, an invisible material of unknown composition, herded luminous matter in the universe from its initial smooth state into the cosmic web of galaxies and galaxy clusters that populate the universe. The University of Chicago’s Andrey Kravtsov, Charlie Conroy and Risa Weschlser will describe these findings in a paper published in the June 20 issue of the Astrophysical Journal. Credit: Image courtesy of Andrey Kravtsov



Previous studies by other researchers had already verified the main features of this scenario, called the cold dark matter model. The Chicago team further extended this work by comparing the results of their supercomputer simulations to the newest, most detailed astronomical observations available today. They found an excellent fit, and they did so without basing their simulations on a lot of complex assumptions.

"The model we use is really, really simple," said Andrey Kravtsov, Associate Professor in Astronomy & Astrophysics. "We want to see how well this framework can do with a minimum number of assumptions."


A paper co-authored by Kravtsov, Charlie Conroy and Risa Wechsler describing these findings will be published in the June 20 issue of the Astrophysical Journal. The research was funded by a grant from the National Science Foundation, with additional support from the National Aeronautics and Space Administration.

Simulations that Kravtsov’s team conducted two years ago had predicted that galaxies of different luminosity or brightness would cluster differently when the universe was young than they do today. The team’s Astrophysical Journal paper verifies that prediction and shows that similar differences appear in the recent data.

"In the early stages of evolution of the universe, each galaxy has a high probability of having a close neighbor of similar luminosity," Kravtsov said, much more so than galaxies today. "That was what was predicted and that’s what the observations now seem to show us."

The data that Kravtsov’s team compared to its simulations came from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey, and from the Sloan Digital Sky Survey.

Using the Keck 10-meter telescopes in Hawaii, DEEP2 took detailed observations of how galaxies were clustered seven billion years ago, when the universe was approximately half its current age. The Sloan Survey, meanwhile, provided additional data regarding galaxy clustering from more recent epochs in the history of the universe.

"We essentially have data on the distribution of galaxies over most of the evolution of the universe, and the data are accurate," Kravtsov said. "Although the measurements at earlier epochs have larger errors, due to smaller data sets, their accuracy and power to constrain theoretical models is quite remarkable."

The Chicago scientists based their supercomputer simulations on the assumption that galaxies form in the center of dark-matter halos.

According to this scheme, gravity causes the dark matter in these regions to collapse into halos. These halos provide a central location where normal matter consisting of hydrogen, helium and a small amount of heavier elements would collect in gaseous form. Once this gas had cooled and condensed, it achieved sufficient density for star formation to begin on a galactic scale.

When the Chicago team compared the distribution of galaxies in its cyber universe to the real one, "that scheme turned out to work extremely well," Kravtsov said. "It wasn’t guaranteed that it would actually work so well in reproducing the data."

Some fields of astrophysics are less fortunate: they have a large body of data but no way to explain it. "The data just kind of hang there. Nobody quite understands what it’s telling us or how to interpret it."

But the Chicago simulations further support the idea that the universe behaves the way the cold dark matter scenario tells them it should, that galaxies tend to form in high-density regions of dark matter.

"We understand the distribution of these dark-matter halos, and the implication of this analysis is that we also understand how the properties of these halos are related to galaxy luminosity, how bright the galaxy is," Kravtsov said.

Brighter galaxies also are found in more pronounced large-scale structures. "If you look at fainter galaxies, their distribution becomes more diffuse. We can still see structure, but it’s not as pronounced."

Additional data continues to become available. For example, the Sloan Survey has gone beyond mapping the galaxies to include measurements of the dark matter that surrounds them. And other new, high-quality data regarding the distribution of galaxies from the very early stages in the evolution of the universe are becoming available. The first comparisons of the theory’s predictions with that data indicate good agreement over the span of about 12 billion years, Kravtsov said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>