Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois researchers produce two most important scientific papers

07.06.2006


Two of the five most important papers published in the 43-year history of the journal Applied Physics Letters were written by researchers at the University of Illinois at Urbana-Champaign.



Nick Holonyak Jr., a John Bardeen Chair Professor of Electrical and Computer Engineering and Physics at Illinois, was an author of both papers, which span the development of the light-emitting diode to the invention of the transistor laser.

As the American Institute of Physics celebrates its 75th anniversary this year, editors of the organization’s research journals were asked to select the five most significant papers published in each journal. In the case of Applied Physics Letters, thousands of papers were considered -- not only for scientific content, but also for the impact a paper had, or might have, on industry or the general public.


The first of Holonyak’s chosen papers appeared in the journal’s Dec. 1, 1962, issue and reported the first semiconductor laser in the visible spectrum and the first visible light-emitting diode, which formed the basis for today’s high brightness light-emitting diodes.

"This may be the most important piece of work I’ve ever done," said Holonyak, who was employed at the General Electric Co. in Syracuse, N.Y., at the time. Holonyak’s technician, Sam (Severio) Bevacqua, was the paper’s only co-author.

The second paper selected by the journal appeared in the Sept. 26, 2005, issue and reported the first room-temperature operation of a transistor laser. "I consider this a very important development and maybe -- time will tell -- a great development," Holonyak said.

In addition to Holonyak, the paper’s co-authors were electrical and computer engineering professor Milton Feng, and postdoctoral research associate Gabriel Walter and graduate research assistant Richard Chan (now at BAE Systems).

The Illinois researchers first reported the demonstration of a light-emitting, heterojunction bipolar transistor in the journal’s Jan. 5, 2004, issue. They described the first laser operation of the light-emitting transistor in the Nov. 15, 2004, issue, but at that time the transistor laser had to be chilled with liquid nitrogen to minus 73 degrees Celsius.

By demonstrating room-temperature operation, the researchers moved the transistor laser much closer to practical applications.

"Room-temperature transistor lasers could facilitate faster signal processing, large capacity seamless communications, and higher performance electrical and optical integrated circuits," said Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. Feng has received worldwide recognition for his research on heterojunction bipolar transistors. He has produced the world’s fastest bipolar transistor, a device that operates at a frequency of more than 700 gigahertz.

The transistor laser combines the functionality of both a transistor and a laser by converting electrical input signals into two output signals, one electrical and one optical.

"By incorporating quantum wells into the active region, we have enhanced the electrical and optical properties, making possible stimulated emission and transistor laser operation," said Holonyak, who also is a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition. "What we have here is a new form of transistor and a new form of laser."

The transistor laser also raises the possibility of replacing wiring between components at the chip- or board-level with optical interconnects, offering more flexibility and capability in true electronic-integrated circuits.

"Fifty-eight years after (John) Bardeen and (Walter) Brattain invented the transistor, we have hit upon something new that is surprisingly fundamental and rich in possibilities," Holonyak said. "I am happy to have had a hand in this."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>