Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAS PN06/32: The Magnetic Nature of a Mysterious Cosmic X-ray Emitter

07.06.2006


Our Sun has its explosive flares and spots and high speed wind, but it is a placid star compared to some. Stars that are much more massive live fast and die young, with blue-white, intensely hot surfaces that emit energy at a rate millions of times greater than that of the Sun. These stars are so bright that their light alone propels outflowing stellar winds - up to a billion times stronger than the solar wind - at speeds of up to 30,000 km/s, or one per cent of the speed of light.



An international team of astronomers [1] has discovered that one such star, the naked-eye tau Scorpii, unexpectedly hosts a complex network of magnetic field lines over its surface. Tau Scorpii has been known for some time to emit X-rays at an unusually high rate and to rotate slower than most otherwise similar stars. The newly discovered magnetic field, presumably a relic from the star’s formation stage, goes some way to explaining both characteristics, although the mechanism by which the magnetic field slowed down tau Scorpii’s rotation so strongly remains mysterious.

These results will be published in the Monthly Notices of the Royal Astronomical Society.


The processes by which hot, massive stars expel their surface layers through their strong outflowing winds have a major impact on a star’s long-term fate. The cast-off material can also interact with other nearby stars, contribute matter and energy to the surrounding interstellar medium, and even induce bursts of new star formation. Hot massive stars are thus key actors in the life of a galaxy.

One such hot star is tau Scorpii, whose intrinsic brightness is so great that it is easily visible with the naked eye, despite its distance of over 400 light-years. Weighing as much as 15 Suns, tau Scorpii is 5 to 6 times bigger and hotter than our own star. Such massive stars are relatively few in number compared to stars like the Sun, and tau Scorpii is actually one of our closest massive neighbours.

Massive stars are thought to emit X-rays because of supersonic shocks occurring within their outflowing winds. However, tau Scorpii is an unusually strong X-ray source compared to stars which are otherwise similar.

The reason for this enhanced activity was a puzzle until the present discovery, which revealed that the star hosts a complex network of magnetic field lines over its surface (see image). According to the discovery team, this field is most probably a relic from the star’s formation stage.

The most interesting aspect, though, is how the field interacts with the wind, forcing it to flow along magnetic field lines, like beads along wires. Wind streams along ’open’ magnetic field lines (shown in blue) freely escape the star, something that wind streams in magnetic ’arcades’ (shown in white) cannot achieve. The result is that, within each magnetic arcade, wind flows from both footprints collide with each other at the loop summits, producing tremendously energetic shocks and turning the wind material into blobs of million-degree, X-ray emitting plasma tied to the magnetic loops.

This model provides a natural explanation of why tau Scorpii is such an intense X-ray emitter. However, it is not yet clear how the magnetic field succeeded in slowing down the rotation rate of the star to less than one-tenth that of otherwise similar, non-magnetic, massive stars.

Sun-like stars can be slowed down through their magnetic wind, just as ice-skaters are spun down when outstretching their arms. Tau Scorpii does not, however, lose material fast enough to have its rotation modified within its very short lifetime of a few million years.

The researchers discovered and examined the magnetic field of the star by looking at the tiny, very specific polarisation signals that magnetic fields induce in the light of magnetic stars. To do this, they used ESPaDOnS [2], by far the most powerful instrument in the world for carrying out this kind of research. This new instrument, currently attached to the Canada-France-Hawaii Telescope [3] on Hawaii, was specially designed at the Observatoire Midi-Pyrénées in France for observing and studying magnetic fields in stars other than the Sun.

[1] The team includes J. F. Donati (Observatoire Midi-Pyrenees/LATT, CNRS/UPS, France), I. D. Howarth (University College London, UK), M. M. Jardine (University of StAndrews, UK), P. Petit (Observatoire Midi-Pyrenees/LATT, CNRS/UPS, France), C. Catala (Observatoire Paris-Meudon/LESIA, CNRS/UP7, France), J. D. Lanstreet (University of Western Ontario, Canada), J. C. Bouret (Observatoire de Marseille/LAM, CNRS/UdP, France), E. Alecian (Observatoire Paris-Meudon/LESIA, CNRS/UP7, France), J. R. Barnes (University of St Andrews, UK), T. Forveille (Canada-France-Hawaii Telescope Corporation, USA), F. Paletou (Observatoire Midi-Pyrenees/LATT, CNRS/UPS, France) and N. Manset (Canada-France-Hawaii Telescope Corporation, USA).

[2] ESPaDOnS was co-funded by France (CNRS/INSU, Ministère de la Recherche, LATT, Observatoire Midi-Pyrénées, Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon), Canada (NSERC), CFHT and ESA (ESTEC/RSSD). First light occurred at CFHT on 2 September 2004.

[3] CFHT operation is funded by Canada (NSERC), France (CNRS/INSU) and the University of Hawaii.

Prof. Ian Howarth | alfa
Further information:
http://www.star.ucl.ac.uk
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>