Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RAS PN06/32: The Magnetic Nature of a Mysterious Cosmic X-ray Emitter


Our Sun has its explosive flares and spots and high speed wind, but it is a placid star compared to some. Stars that are much more massive live fast and die young, with blue-white, intensely hot surfaces that emit energy at a rate millions of times greater than that of the Sun. These stars are so bright that their light alone propels outflowing stellar winds - up to a billion times stronger than the solar wind - at speeds of up to 30,000 km/s, or one per cent of the speed of light.

An international team of astronomers [1] has discovered that one such star, the naked-eye tau Scorpii, unexpectedly hosts a complex network of magnetic field lines over its surface. Tau Scorpii has been known for some time to emit X-rays at an unusually high rate and to rotate slower than most otherwise similar stars. The newly discovered magnetic field, presumably a relic from the star’s formation stage, goes some way to explaining both characteristics, although the mechanism by which the magnetic field slowed down tau Scorpii’s rotation so strongly remains mysterious.

These results will be published in the Monthly Notices of the Royal Astronomical Society.

The processes by which hot, massive stars expel their surface layers through their strong outflowing winds have a major impact on a star’s long-term fate. The cast-off material can also interact with other nearby stars, contribute matter and energy to the surrounding interstellar medium, and even induce bursts of new star formation. Hot massive stars are thus key actors in the life of a galaxy.

One such hot star is tau Scorpii, whose intrinsic brightness is so great that it is easily visible with the naked eye, despite its distance of over 400 light-years. Weighing as much as 15 Suns, tau Scorpii is 5 to 6 times bigger and hotter than our own star. Such massive stars are relatively few in number compared to stars like the Sun, and tau Scorpii is actually one of our closest massive neighbours.

Massive stars are thought to emit X-rays because of supersonic shocks occurring within their outflowing winds. However, tau Scorpii is an unusually strong X-ray source compared to stars which are otherwise similar.

The reason for this enhanced activity was a puzzle until the present discovery, which revealed that the star hosts a complex network of magnetic field lines over its surface (see image). According to the discovery team, this field is most probably a relic from the star’s formation stage.

The most interesting aspect, though, is how the field interacts with the wind, forcing it to flow along magnetic field lines, like beads along wires. Wind streams along ’open’ magnetic field lines (shown in blue) freely escape the star, something that wind streams in magnetic ’arcades’ (shown in white) cannot achieve. The result is that, within each magnetic arcade, wind flows from both footprints collide with each other at the loop summits, producing tremendously energetic shocks and turning the wind material into blobs of million-degree, X-ray emitting plasma tied to the magnetic loops.

This model provides a natural explanation of why tau Scorpii is such an intense X-ray emitter. However, it is not yet clear how the magnetic field succeeded in slowing down the rotation rate of the star to less than one-tenth that of otherwise similar, non-magnetic, massive stars.

Sun-like stars can be slowed down through their magnetic wind, just as ice-skaters are spun down when outstretching their arms. Tau Scorpii does not, however, lose material fast enough to have its rotation modified within its very short lifetime of a few million years.

The researchers discovered and examined the magnetic field of the star by looking at the tiny, very specific polarisation signals that magnetic fields induce in the light of magnetic stars. To do this, they used ESPaDOnS [2], by far the most powerful instrument in the world for carrying out this kind of research. This new instrument, currently attached to the Canada-France-Hawaii Telescope [3] on Hawaii, was specially designed at the Observatoire Midi-Pyrénées in France for observing and studying magnetic fields in stars other than the Sun.

[1] The team includes J. F. Donati (Observatoire Midi-Pyrenees/LATT, CNRS/UPS, France), I. D. Howarth (University College London, UK), M. M. Jardine (University of StAndrews, UK), P. Petit (Observatoire Midi-Pyrenees/LATT, CNRS/UPS, France), C. Catala (Observatoire Paris-Meudon/LESIA, CNRS/UP7, France), J. D. Lanstreet (University of Western Ontario, Canada), J. C. Bouret (Observatoire de Marseille/LAM, CNRS/UdP, France), E. Alecian (Observatoire Paris-Meudon/LESIA, CNRS/UP7, France), J. R. Barnes (University of St Andrews, UK), T. Forveille (Canada-France-Hawaii Telescope Corporation, USA), F. Paletou (Observatoire Midi-Pyrenees/LATT, CNRS/UPS, France) and N. Manset (Canada-France-Hawaii Telescope Corporation, USA).

[2] ESPaDOnS was co-funded by France (CNRS/INSU, Ministère de la Recherche, LATT, Observatoire Midi-Pyrénées, Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon), Canada (NSERC), CFHT and ESA (ESTEC/RSSD). First light occurred at CFHT on 2 September 2004.

[3] CFHT operation is funded by Canada (NSERC), France (CNRS/INSU) and the University of Hawaii.

Prof. Ian Howarth | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>



Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

More VideoLinks >>>