Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA astronomers discover surprising shortage of hot gas in famed spiral galaxy NGC 1068

06.06.2006


Finding could offer clues to origins of Milky Way


Image of NGC 1068 taken with the Optical Monitor aboard the XMM Satellite
Credit: Robin Shelton, University of Georgia



Spiral galaxies are the glitter of the universe. These systems of stars, dust, gas and plasma are held together by gravity but seem to pinwheel across the darkness of space. They have fascinated nighthawks for hundreds of years and dazzled scientists who use increasingly sophisticated tools to study them.

Now, for the first time, astronomers from the University of Georgia have discovered a startling absence of hot gas being given off by the "disk" of a spiral galaxy first cataloged more than 225 years ago. The galaxy, now called NGC 1068, is younger than the Milky Way and could thus offer insights into the formation of our own spiral galaxy.


"In many ways, NGC 1068 is a window on our past," said Robin Shelton, who led the research. "What we’ve found is that the process of heating gas in this galaxy is more complex that we had expected."

The research was presented this week at the 208th Annual Meeting of the American Astronomical Society in Calgary, Alberta, Canada. Also assisting in the research, which was presented in a poster session, was UGA doctoral student Shinya Miyake.

Spiral galaxy NGC 1068 (hereafter "1068") is a vast 60 million light years from Earth and is moving away from us at more than a thousand miles a second. It is so bright, however, that it was first discovered in 1780, and French astronomer Charles Messier named it M 77--for the 77th body listed in his catalog of visible objects in space. Though a change in nomenclature later altered its name, it has remained the subject of study for two centuries. New tools, such as the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, launched in 1999 have allowed researchers new information on this mysterious spiral galaxy so far from Earth.

FUSE is an 18-foot-tall, 3,000-pound satellite that orbits nearly 500 miles above the Earth. It has four telescopes that can function as a single instrument and analyze light at wavelengths too short for the famed Hubble Space Telescope to see. Since its launch, it has collected science data on more 2,000 different objects in space. It was developed and is being operated for NASA by Johns Hopkins University.

"From Nov. 29-Dec. 1, 2001, FUSE observed 1068 during five different sessions, recording the data that we analyzed," said Shelton.

Some of the information from these observing sessions had been analyzed before by scientists from other universities, but that was data gathered on the "bulge" at the center of the galaxy. (If you think of a spiral galaxy as fried egg standing on end, the bulge at the center of the system would be the yolk, and the disk would be the white around it.) The data UGA analyzed is from a location in the disk of 1068 that is about the same distance as the Earth is from the center of our galaxy.

The researchers studied the emission of oxygen-6 (highly ionized oxygen, or O VI, as it is usually written) to see how much hot gas is in the disk of 1068. Extreme heat can cause molecules to break apart, and as the temperature rises, electrons can be ripped off the oxygen atoms. While normal oxygen has eight electrons, oxygen-6 only has three, but scientists know this can only occur when the surrounding temperature reaches an astounding 100,000 degrees centigrade.

"Oxygen-6 is a tracer of hot gas," said Shelton, "so examining it tells us a lot about how much gas is in these galaxies."

Because gases give off characteristic light "signatures," the team was able to use data from FUSE gathered from the disk of 1068 to analyze its emission spectrum.

Based on comparisons with our own galaxy, the astronomers had expectations about the amount of hot gas that they would find in the disk of 1068. Analysis, however, showed dramatically less than expected, and that shortage has puzzled the UGA team. There should be considerable hot gas in 1068, especially since that galaxy is a "Seyfert galaxy"--one whose center has a huge black hole, and whose energy, released around it, might be compared to millions of atomic bombs continuously exploding. In addition, 1068 has so-called "starburst regions," where enormous "bubbles" of hot gas are blown.

"We just didn’t find the oxygen-6 we expected, and we’re not sure of the cause," said Shelton.

This is, in fact, the first time anyone has looked for oxygen-6 emission from the extended disk so far from the center of a Seyfert galaxy. This serendipitous discovery was made while the researchers studied oxygen-6 in our galaxy.

The research also documented a "hole" in the galaxy’s emissive oxygen-6 coverage, and the cause of this remains unclear as well. Shelton and her group plan to continue examining this phenomenon.

Wendy Jones | EurekAlert!
Further information:
http://www.uga.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>