Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gemini Images Contrast the Late Evolution of Two Very Different Stars

06.06.2006


Two new images from the Gemini Observatory released yesterday (Monday June 5th 2006) at the American Astronomical Society meeting in Calgary, Canada, show a pair of beautiful nebulae that were created by two very different types of stars at what may be similar points in their evolutionary timelines.

One is a rare type of very massive spectral-type "O" star surrounded by material it ejected in an explosive event earlier in its life that continues to lose mass in a steady "stellar wind." The other is a star originally more similar to our Sun that has lost its outer envelope following a "red giant" phase. It continues to lose mass via a stellar wind as it dies, forming a planetary nebula. The images were made using the Gemini Multi-Object Spectrograph (GMOS) on Gemini South as part of the Gemini Legacy Imaging program.

GMOS was built as a joint UK / Canadian effort by the UK Astronomy Technology Centre (UKATC) in Edinburgh, the University of Durham and the Dominion Astrophysical Observatory in Canada. Its creators praise the performance of GMOS.



Professor James Dunlop of the University of Edinburgh, current Chair of Gemini Science Committee, said “The Gemini telescope using GMOS is unrivalled in its ability to take stunning images of distant phenomena in our Galaxy and beyond.”

UK membership of Gemini is funded by the Particle Physics and Astronomy Research Council (PPARC), which also operates the UK ATC.

A Rare and Massive Star.

The first image shows the emission nebula NGC 6164-5, a rectangular, bipolar cloud with rounded corners and a diagonal bar producing an inverted S-shaped appearance. It lies about 1,300 parsecs (4,200 light-years) away in the constellation Norma. The nebula measures about 1.3 parsecs (4.2 light-years) across, and contains gases ejected by the star HD 148937 at its heart. This star is 40 times more massive than the Sun, and at about three to four million years of age, is past the middle of its life span. Stars this massive usually live to be only about six million years old, so HD 148397 is aging fast. It will likely end its life in a violent supernova explosion.

Like other O-type stars, HD148937 is heating up its surrounding clouds of gas with ultraviolet radiation. This causes them to glow in visible light, illuminating swirls and caverns in the cloud that have been sculpted by winds from the star. Some astronomers suggest that the cloud of material has been ejected from the star as it spins on its axis, in much the same way a rotating lawn sprinkler shoots out water as it spins. It’s also possible that magnetic fields surrounding the star may play a role in creating the complex shapes clearly seen in the new Gemini image.

The Death of a Sunlike Star–With a Twist.

Just as astronomers are still seeking to understand the process of mass loss from a star like HD 158937, they are also searching out the exact mechanisms at play when a star like the Sun begins to age and die. NGC 5189, a chaotic-looking planetary nebula that lies about 550 parsecs (1,800 light-years) away in the southern hemisphere constellation Musca, is a parallelogram-shaped cloud of glowing gas. The GMOS image of this nebula shows long streamers of gas, glowing dust clouds, and cometary knots pointing away from the central star. Its unruly appearance suggests some extraordinary action at the heart of this planetary nebula.

At the core of NGC 5189 is the hot, hydrogen-deficient star HD 117622. It appears to be blowing off its thin remnant atmosphere into interstellar space at a speed of about 2,700 kilometers (about 1,700 miles) per second. As the material leaves the star, it immediately begins to collide with previously ejected clouds of gas and dust surrounding the star. This collision of the fast-moving material with slower motion gas shapes the clouds, which are illuminated by the star. These so-called "low ionization structures" (or LIS) show up as the knots, tails, streamers, and jet-like structures we see in the Gemini image. The structures are small and not terribly bright, lending planetary nebulae their often-ghostly appearance.

"The likely mechanism for the formation of this planetary nebula is the existence of a binary companion to the dying star," said Gemini scientist Kevin Volk. "Over time the orbits drift due to precession and this could result in the complex curves on the opposite sides of the star visible in this image."

NGC 5189 was discovered by James Dunlop in 1826, when Sir John Herschel observed it in 1835 he described it as a "strange" object. It was not immediately identified as a planetary nebula, but its peculiar spectra, shows emission lines of ionized helium, hydrogen, sulphur and oxygen. These all indicate elements being burned inside the star as it ages and dies. As the material is blown out to space, it forms concentric shells of various gases from elements that were created in the star’s nuclear furnace.

Julia Maddock | alfa
Further information:
http://www.gemini.edu/dualneb
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>