Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Gemini Images Contrast the Late Evolution of Two Very Different Stars

06.06.2006


Two new images from the Gemini Observatory released yesterday (Monday June 5th 2006) at the American Astronomical Society meeting in Calgary, Canada, show a pair of beautiful nebulae that were created by two very different types of stars at what may be similar points in their evolutionary timelines.

One is a rare type of very massive spectral-type "O" star surrounded by material it ejected in an explosive event earlier in its life that continues to lose mass in a steady "stellar wind." The other is a star originally more similar to our Sun that has lost its outer envelope following a "red giant" phase. It continues to lose mass via a stellar wind as it dies, forming a planetary nebula. The images were made using the Gemini Multi-Object Spectrograph (GMOS) on Gemini South as part of the Gemini Legacy Imaging program.

GMOS was built as a joint UK / Canadian effort by the UK Astronomy Technology Centre (UKATC) in Edinburgh, the University of Durham and the Dominion Astrophysical Observatory in Canada. Its creators praise the performance of GMOS.



Professor James Dunlop of the University of Edinburgh, current Chair of Gemini Science Committee, said “The Gemini telescope using GMOS is unrivalled in its ability to take stunning images of distant phenomena in our Galaxy and beyond.”

UK membership of Gemini is funded by the Particle Physics and Astronomy Research Council (PPARC), which also operates the UK ATC.

A Rare and Massive Star.

The first image shows the emission nebula NGC 6164-5, a rectangular, bipolar cloud with rounded corners and a diagonal bar producing an inverted S-shaped appearance. It lies about 1,300 parsecs (4,200 light-years) away in the constellation Norma. The nebula measures about 1.3 parsecs (4.2 light-years) across, and contains gases ejected by the star HD 148937 at its heart. This star is 40 times more massive than the Sun, and at about three to four million years of age, is past the middle of its life span. Stars this massive usually live to be only about six million years old, so HD 148397 is aging fast. It will likely end its life in a violent supernova explosion.

Like other O-type stars, HD148937 is heating up its surrounding clouds of gas with ultraviolet radiation. This causes them to glow in visible light, illuminating swirls and caverns in the cloud that have been sculpted by winds from the star. Some astronomers suggest that the cloud of material has been ejected from the star as it spins on its axis, in much the same way a rotating lawn sprinkler shoots out water as it spins. It’s also possible that magnetic fields surrounding the star may play a role in creating the complex shapes clearly seen in the new Gemini image.

The Death of a Sunlike Star–With a Twist.

Just as astronomers are still seeking to understand the process of mass loss from a star like HD 158937, they are also searching out the exact mechanisms at play when a star like the Sun begins to age and die. NGC 5189, a chaotic-looking planetary nebula that lies about 550 parsecs (1,800 light-years) away in the southern hemisphere constellation Musca, is a parallelogram-shaped cloud of glowing gas. The GMOS image of this nebula shows long streamers of gas, glowing dust clouds, and cometary knots pointing away from the central star. Its unruly appearance suggests some extraordinary action at the heart of this planetary nebula.

At the core of NGC 5189 is the hot, hydrogen-deficient star HD 117622. It appears to be blowing off its thin remnant atmosphere into interstellar space at a speed of about 2,700 kilometers (about 1,700 miles) per second. As the material leaves the star, it immediately begins to collide with previously ejected clouds of gas and dust surrounding the star. This collision of the fast-moving material with slower motion gas shapes the clouds, which are illuminated by the star. These so-called "low ionization structures" (or LIS) show up as the knots, tails, streamers, and jet-like structures we see in the Gemini image. The structures are small and not terribly bright, lending planetary nebulae their often-ghostly appearance.

"The likely mechanism for the formation of this planetary nebula is the existence of a binary companion to the dying star," said Gemini scientist Kevin Volk. "Over time the orbits drift due to precession and this could result in the complex curves on the opposite sides of the star visible in this image."

NGC 5189 was discovered by James Dunlop in 1826, when Sir John Herschel observed it in 1835 he described it as a "strange" object. It was not immediately identified as a planetary nebula, but its peculiar spectra, shows emission lines of ionized helium, hydrogen, sulphur and oxygen. These all indicate elements being burned inside the star as it ages and dies. As the material is blown out to space, it forms concentric shells of various gases from elements that were created in the star’s nuclear furnace.

Julia Maddock | alfa
Further information:
http://www.gemini.edu/dualneb
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>