Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When galaxies collide: Supercomputers reproduce fluid motions of cosmic duet

02.06.2006


Simulations forecast favorable conditions for verifying Einstein predictions


The gaseous disks of two galaxies collide in this series of images produced in a supercomputer simulation. Approximately three billion years after the collision begins, the two supermassive black holes at the center of the galaxies merge. Such mergers produce strong gravitational waves, which scientists hope to detect with the proposed Laser Interferometer Space Antenna. An international team of scientists led by Stelios Kazantzidis of the Kavli Institute for Cosmological Physics performed the simulations to elucidate the processes that lead to the merger of supermassive black holes and the production of gravitational waves. Credit: Image courtesy of Stelios Kazantzidis


In this image from a supercomputer simulation, gravitational interaction between colliding galaxies generates spectacular tidal tails, plumes and prominent bridges of material connecting the two galaxies. Credit: Image courtesy of Stelios Kazantzidis



A wispy collection of atoms and molecules fuels the vast cosmic maelstroms produced by colliding galaxies and merging supermassive black holes, according to some of the most advanced supercomputer simulations ever conducted on this topic.

"We found that gas is essential in driving the co-evolution of galaxies and supermassive black holes," said Stelios Kazantzidis, a Fellow in the University of Chicago’s Kavli Institute for Cosmological Physics. He and his collaborators published their in February on astro-ph, an online repository of astronomical research papers. They also are preparing another study.


The collaboration includes Lucio Mayer from the Swiss Federal Institute of Technology, Zurich, Zwitzerland; Monica Colpi, University Milano-Bicocca, Italy; Piero Madau, University of California, Santa Cruz; Thomas Quinn, University of Washington; and James Wadsley, McMaster University, Canada. "This type of work became possible only recently thanks to the increased power of supercomputers," Mayer said. Improvements in the development of computer code that describes the relevant physics also helped, he said.

"The combination of both code and hardware improvement makes it possible to simulate in a few months time what had required several years of computation time only four to five years ago."

The findings are good news for NASA’s proposed LISA (Laser Interferometer Space Antenna) mission. Scheduled for launch in 2015, LISA’s primary objective is to search the early universe for gravitational waves. These waves, never directly detected, are predicted in Einstein’s theory of general relativity.

"At very early times in the universe there was a lot of gas in the galaxies, and as the Universe evolved the gas was converted into stars," Kazantzidis said. And large amounts of gas mean more colliding galaxies and merging supermassive black holes. "This is important because LISA is detecting gravitational waves. And the strongest source of gravitational waves in the universe will be from colliding supermassive black holes," he said.

Many galaxies, including the Milky Way galaxy that contains the sun, harbor supermassive black holes at their center. These black holes are so gravitationally powerful that nothing, including light, can escape their grasp.

Today the Milky Way moves quietly through space by itself, but one day it will collide with its nearest neighbor, the Andromeda galaxy. Nevertheless, the Milky Way served as a handy model for the galaxies in the merging supermassive black hole simulations. Kazantzidis’s team simulated the collisions of 25 galaxy pairs to identify the key factors leading to supermassive black hole mergers.

For these mergers to occur, the host galaxies must merge first. Two gas-poor galaxies may or may not merge, depending on the structure of the galaxies. But whenever gas-rich galaxies collide in the simulations, supermassive black-hole mergers typically followed.

"The more supermassive black holes that you predict will merge, the larger the number of sources that LISA will be able to detect," Kazantzidis said. As two galaxies begin to collide, the gas they contain loses energy and funnels into their respective cores. This process increases the density and stability of the galactic cores. When these cores merge, the supermassive black holes they host also merge. When these cores become disrupted, their supermassive black holes fail to merge.

Each simulation conducted by Kazantzidis consumed approximately a month of supercomputing time at the University of Zurich, the Canadian Institute for Theoretical Astrophysics, or the Pittsburgh Supercomputing Center.

The simulations are the first to simultaneously track physical phenomena over vastly differing scales of time and space. "The computer can focus most of its power in the region of the system when many things are happening and are happening at a faster pace than somewhere else," Mayer said.

When galaxies collide, the billions of stars contained in them fly past one another at great distances. But their surrounding gravity fields do interact, applying the cosmic brakes to the two galaxies’ respective journeys. The galaxies separate, but they come back together, again and again for a billion years. At each step in the process, the galaxies lose speed and energy.

"They come closer and closer and closer until the end, when they merge," Kazantzidis said. The simulations have produced effects that astronomers have observed in telescopic observations of colliding galaxies. Most notable among these is the formation of tidal tails, a stream of stars and gas that is ejected during the collision by the strong tidal forces.

On a smaller scale, astronomers also observe that colliding galaxies display increased nuclear activity as indicated by brighter cores and increased star formation.

Despite the success of the simulations, Kazantzidis and his team still work to improve their results. "It’s a struggle every day to increase the accuracy of the computation," he said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>