Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn’s moon Enceladus may have rolled over to put a hot spot at the pole

01.06.2006


Enceladus, a small icy moon of Saturn, may have dramatically reoriented relative to its axis of rotation, rolling over to put an area of low density at the moon’s south pole. According to a new study, this reorientation process could explain the polar location of a region where NASA’s Cassini spacecraft recently observed icy jets and plumes indicating active geysers of water vapor spewing from the moon’s surface.



"When we saw the Cassini results, we were surprised that this hot spot was located at the pole. So we set out to explain how it could end up at the pole if it didn’t start there," said Francis Nimmo, assistant professor of Earth sciences at the University of California, Santa Cruz.

Coauthor Robert Pappalardo worked on the study while at the University of Colorado and is now at NASA’s Jet Propulsion Laboratory in Pasadena. Nimmo and Pappalardo have proposed a reorientation process driven by an upwelling of warm, low-density material inside Enceladus. A similar reorientation process may also have operated on other small moons in the solar system, such as Uranus’s moon Miranda, they said. The researchers described their findings in a paper published in the June 1 issue of the journal Nature.


Nimmo and Pappalardo calculated the effects of a low-density blob beneath the surface of Enceladus and showed that this could indeed cause the moon to roll over and put the low-density blob at the pole. Rotating bodies, including planets and moons, are most stable if most of their mass is close to the equator. Therefore, any redistribution of mass within the object can cause instability with respect to the axis of rotation. The resulting reorientation will tend to position excess mass at the equator and, conversely, areas of low density at the poles, Nimmo said.

"The whole body rolls over, while the spin axis stays fixed," he said.

An upwelling of warm, low-density material could also help to explain the high heat flux and striking surface features observed at Enceladus’s south pole. These features include not only geysers, but also a "tiger stripe" pattern suggesting fault lines caused by tectonic stress.

"The whole area is hotter than the rest of the moon, and the stripes are hotter than the surrounding surface, suggesting that there is a concentration of warm material below the surface," Nimmo said.

Internal heating of Enceladus probably results from its eccentric orbit around Saturn. The gravitational pull Enceladus feels from Saturn changes in the course of its orbit, and the resulting tidal forces generate heat inside the moon.

"Enceladus gets squeezed and stretched by tidal forces, and that mechanical energy is transformed into heat energy in the interior," Nimmo said.

The upwelling blob (called a "diapir") may be within either the icy shell or the underlying rocky core of Enceladus, he said. In either case, as the material heats up it expands and becomes less dense, then rises toward the surface.

The reorientation scenario leads to testable predictions, Nimmo said. For example, the leading hemisphere of a moon as it travels through space should have more impact craters than the trailing hemisphere. But if the moon rolls over, the pattern of impact craters will also be reoriented. A low-density mass may also produce an observable anomaly in the moon’s gravitational field.

Additional observations of Enceladus are planned for the Cassini mission and should enable the researchers to test these predictions, Nimmo said.

Tim Stephens | EurekAlert!
Further information:
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>