Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn’s moon Enceladus may have rolled over to put a hot spot at the pole

01.06.2006


Enceladus, a small icy moon of Saturn, may have dramatically reoriented relative to its axis of rotation, rolling over to put an area of low density at the moon’s south pole. According to a new study, this reorientation process could explain the polar location of a region where NASA’s Cassini spacecraft recently observed icy jets and plumes indicating active geysers of water vapor spewing from the moon’s surface.



"When we saw the Cassini results, we were surprised that this hot spot was located at the pole. So we set out to explain how it could end up at the pole if it didn’t start there," said Francis Nimmo, assistant professor of Earth sciences at the University of California, Santa Cruz.

Coauthor Robert Pappalardo worked on the study while at the University of Colorado and is now at NASA’s Jet Propulsion Laboratory in Pasadena. Nimmo and Pappalardo have proposed a reorientation process driven by an upwelling of warm, low-density material inside Enceladus. A similar reorientation process may also have operated on other small moons in the solar system, such as Uranus’s moon Miranda, they said. The researchers described their findings in a paper published in the June 1 issue of the journal Nature.


Nimmo and Pappalardo calculated the effects of a low-density blob beneath the surface of Enceladus and showed that this could indeed cause the moon to roll over and put the low-density blob at the pole. Rotating bodies, including planets and moons, are most stable if most of their mass is close to the equator. Therefore, any redistribution of mass within the object can cause instability with respect to the axis of rotation. The resulting reorientation will tend to position excess mass at the equator and, conversely, areas of low density at the poles, Nimmo said.

"The whole body rolls over, while the spin axis stays fixed," he said.

An upwelling of warm, low-density material could also help to explain the high heat flux and striking surface features observed at Enceladus’s south pole. These features include not only geysers, but also a "tiger stripe" pattern suggesting fault lines caused by tectonic stress.

"The whole area is hotter than the rest of the moon, and the stripes are hotter than the surrounding surface, suggesting that there is a concentration of warm material below the surface," Nimmo said.

Internal heating of Enceladus probably results from its eccentric orbit around Saturn. The gravitational pull Enceladus feels from Saturn changes in the course of its orbit, and the resulting tidal forces generate heat inside the moon.

"Enceladus gets squeezed and stretched by tidal forces, and that mechanical energy is transformed into heat energy in the interior," Nimmo said.

The upwelling blob (called a "diapir") may be within either the icy shell or the underlying rocky core of Enceladus, he said. In either case, as the material heats up it expands and becomes less dense, then rises toward the surface.

The reorientation scenario leads to testable predictions, Nimmo said. For example, the leading hemisphere of a moon as it travels through space should have more impact craters than the trailing hemisphere. But if the moon rolls over, the pattern of impact craters will also be reoriented. A low-density mass may also produce an observable anomaly in the moon’s gravitational field.

Additional observations of Enceladus are planned for the Cassini mission and should enable the researchers to test these predictions, Nimmo said.

Tim Stephens | EurekAlert!
Further information:
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>