Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D insulator loses a dimension to enter magnetic ’Flatland’

01.06.2006


In a scrambled Rubik’s cube, colorful squares clash without order. As pieces click into place in the hands of a skilled puzzle solver, the individual characters of squares dissolve as solid faces of uniform color emerge.



In the same way, barium copper silicate-also known as ’’Han Purple,’’ a vivid pigment used in ancient China-transforms from a nonmagnetic, disordered insulator into a magnetic, ordered condensate under conditions of extreme cold and high magnetic field. The components that ’’click into place’’ to form an entirely new phase are the electron orientations of atoms, or ’’spins,’’ described by their quantum state as ’’up’’ or ’’down.’’

Now, scientists at Stanford, Los Alamos National Laboratory and the Institute for Solid State Physics (University of Tokyo) have discovered that at the abrupt lowest temperature transition at which the silicate enters a new state-called the quantum critical point-the three-dimensional material ’’loses’’ a dimension to form a Flatland, of sorts. Just as in the 1884 novella Flatland that posited a planar world, the spins strongly interact only in two dimensions. Effects from the third dimension are negligible. Their work appears in the June 1 issue of Nature.


First author Suchitra Sebastian of the Geballe Laboratory for Advanced Materials and of the Applied Physics Department conducted the experiments for her doctoral dissertation in collaboration with co-authors Ian Fisher, an assistant professor of applied physics at Stanford who was Sebastian’s thesis adviser; scientist Neil Harrison, who was on Sebastian’s thesis committee, and scientist Marcelo Jaime, postdoctoral fellow Peter Sharma and theorist Cristian Batista, all of the National High Magnetic Field Laboratory (NHMFL) at its Los Alamos National Laboratory campus; scientist Luis Balicas of the NHMFL’s Florida State University campus; and Associate Professor Naoki Kawashima of the University of Tokyo.

’’We have shown, for the first time, that the collective behavior in a bulk three-dimensional material can actually occur in just two dimensions,’’ Fisher said. ’’Low dimensionality is a key ingredient in many exotic theories that purport to account for various poorly understood phenomena, including high-temperature superconductivity, but until now there were no clear examples of ’dimensional reduction’ in real materials.’’

Said Harrison: ’’What these findings in barium copper silicate demonstrate is something very fundamental that may provide the key toward understanding the role of dimensionality in quantum critical phenomena. This may be a crucial step for understanding the required properties of new materials, including more exotic superconductors, perhaps even ones with superconductance at higher temperatures.’’

In the normal, or insulating, state of the silicate, a pair of ’’up’’ and ’’down’’ spins cancel out each other to produce no net order. But in the magnetic state, ordering occurs between neighboring electron pairs in all three dimensions. At magnetic fields above 23 tesla (800,000 times that of the Earth’s magnetic field) and temperatures near absolute zero, the silicate enters a rare state, called a Bose-Einstein condensate, in which electron spins move as a collective whole.

From frustration to fruition

At a critical point, the ordered spins in the condensate appear to lose a dimension. Think of the silicate as stacked layers. Suddenly, the spins in one layer cannot influence those of neighboring layers. Magnetic waves travel only along flat planes rather than throughout the entirety of the three-dimensional material.

Batista proposed a theoretical explanation for this strange behavior: It may be due to an effect called ’’geometrical frustration.’’ In the crystal structure of barium copper silicate, individual copper atoms in the silicate layers are not stacked directly above each other, but instead, are shifted over in each layer in zigzag fashion. Near the critical point, the quantum behavior of the spins in such a layered arrangement may ’’frustrate’’ one layer from influencing neighboring layers.

The experimental techniques Sebastian and researchers used to show this effect allowed them to tune high magnetic fields at the lowest experimentally accessible temperatures to precisely access the immediate vicinity of the quantum critical point and explore new physics. World-class facilities and technical support at the National High Magnetic Field Laboratory at Tallahassee, Fla., made this possible. Before this discovery, it had not been possible to experimentally achieve this level of proximity to the quantum critical point in Bose-Einstein condensates.

’’Magnetic moments associated with the electron spin seem to play a crucial role in the behavior of high-temperature superconductor materials,’’ Batista said. ’’Fluctuations of the magnetic moments affect the flow of current-carrying electrons in a nontrivial way, in particular near the quantum critical point, where these fluctuations become very large. By studying the quantum critical behavior of insulating materials (with no current-carrying electrons), we can isolate the magnetic properties and gain a better understanding of their possible behaviors.’’

The discovery of reduction in dimensions at the quantum critical point in the magnetic insulator barium copper silicate provides a clue to mysterious physical phenomena observed in other materials, such as superconductivity at high temperatures and the anomalous behavior of metallic magnets known as ’’heavy fermions.’’

’’The holy grail for condensed matter physicists is to make the essential step of understanding the mechanisms that can produce high temperature superconductivity,’’ Harrison said. ’’The observed dimensional reduction in the Bose-Einstein condensate of barium copper silicate provides a particularly vivid example of the role of dimensionality in condensate physics because it is free from other complications that cloud our understanding of superconducting materials.’’

While electron charge now transports information in electronic devices, electron spin may someday fulfill the same role in ’’spintronic’’ devices.

’’Spin currents are capable of carrying far more information than a conventional charge current-which makes them the ideal vehicle for information transport in future applications such as quantum computing,’’ Sebastian said.

Noted Fisher: ’’Our research group focuses on new materials with unconventional magnetic and electronic properties. Han Purple was first synthesized over 2500 years ago, but we have only recently discovered how exotic its magnetic behavior is. It makes you wonder what other materials are out there that we haven’t yet even begun to explore.’’

Dawn Levy | EurekAlert!
Further information:
http://www.stanford.edu
http://www.magnet.fsu.edu/

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>