Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics can improve your football

23.05.2006


As the World Cup draws closer and football fever starts to take over, physicist Nick Linthorne has found out how players like Gary Neville can achieve the perfect long throw-in, which could be crucial in setting up a goal for the England squad. An article, A new angle on throwing, in the June edition of Physics World, describes how the physics of projectiles can be used to calculate the optimum angle at which a ball needs to be released to achieve the longest possible throw-in. The article describes how the optimum angle is much less than physicists previously believed.



When a player takes a long throw-in, they want the ball to travel as far as possible. The distance a ball travels when it is thrown depends on both the speed at which it is released and the launch angle. According to the laws of basic physics, a simple projectile will travel furthest when launched at an angle of 45 degrees.

However, this approach assumes that the launch speed is independent of the launch angle. New research, however, has found out that this is not true in practice, as when most footballers take a throw-in they use shallower angles nearer 30 degrees. This is because the muscles in a player’s arms and back allow more horizontal than vertical force to be exerted on the ball when it is released.


Dr Nick Linthorne, a physics lecturer and researcher at Brunel University, and his student David Everett came to this conclusion after taking video footage of two players performing throw-ins at a variety of angles. They then used computer software to measure the different ball speeds and angles in the video.

Dr Linthorne said “To calculate the optimum angle at which to launch the ball, we first derived an expression from the video data, linking the release speed to the release angle. This expression for release speed was then substituted into the physics equation for the range of a projectile. By plotting a graph for the range versus several angles, we were able to calculate the optimum angle of release to be 30 degrees. Of course the angle will vary for each player, as they have different strengths, but for most players the optimum launch angle is calculated to be between 25 and 30 degrees, which agrees with what we see from players on the pitch.”

How far a ball travels when a player takes a throw-in depends on other factors such as the player’s limb lengths and muscle strengths and most players use trial and error to work out the best angle for them. This formula explains the physics behind what they practise and why it works. No doubt there will be many other moves seen on the pitch this summer such as curving free kicks that can also be explained by physics.

Helen MacBain | alfa
Further information:
http://physicsweb.org/dl/PWJUNE06linthorne.pdf
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>