Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First pictures from the map of the universe mission

23.05.2006


An ambitious mission by the Japan Aerospace Exploration Agency (JAXA) to make a new, high resolution map of the universe has just successfully returned its first pictures, and UK team members are delighted with the success. The AKARI (formerly ASTRO-F) infrared space telescope is making its All-Sky Survey at infrared wavelengths with sharper images and a much higher sensitivity than the first infrared astronomical sky survey satellite launched in 1983. AKARI will leave a tremendous legacy for the future of astronomy. Most of the light ever emitted in the Universe was emitted in the infra-red part of the spectrum, so the range of objects that can be studied by this survey is huge.

Today (May 22nd), at a press conference in Japan, JAXA released spectacular infra-red images of the Nebula IC 4954 that show the birth of stars in their cradle of formation.

“These first images are extremely promising,” said Dr. Stephen Serjeant, Senior Lecturer in Astrophysics at the Open University, said. ”The beautiful filigree structure in the nebula was impossible to see with the previous satellite IRAS. After having worked on this for so many years, it is wonderful to see our labours rewarded so clearly. AKARI can do many things that no other telescope on the Earth or in space can.”



Glenn White, Professor of Astronomy at The Open University and The CCLRC Rutherford Appleton Laboratory, adds: “The AKARI mission will redefine our view of the Universe at infrared wavelengths, achieving considerably sharper images through its improved higher spatial resolution and sensitivity over the whole sky than previously available. It offers a major new observatory facility to probe the cradles of star formation, that are normally obscured from the view of other telescopes, the formation and evolution of planetary systems, and to observe the embryonic galaxies assembling toward the edge of the observable universe. History tells us that any similar step forward in performance over what has gone before, is likely to reveal unexpected new phenomena or classes of objects that can help to redefine our understanding of the Universe”

Dr Richard Savage, postdoctoral research fellow at the University of Sussex, said "It’s wonderful to see the first images coming from the AKARI space telescope, after so much hard work by everyone on the project. It’s particularly gratifying to see how well AKARI is functioning; this bodes extremely well for the science we will be able to produce from the mission."

Michael Rowan-Robinson, Head of Astrophysics at Imperial College London, said: "The great power of the AKARI mission is that it is an all-sky survey in the far infrared with improved sensitivity and greatly improved resolution compared to the IRAS mission of the 1980s. It will be a major step forward at these wavelengths."

Dr. Seb Oliver (Reader in Astronomy at the University of Sussex) says "Dr. Richard Savage and I have just returned from Japan where we spent an exhausting time looking at the first data from Akari. We are delighted that everything appears to be performing just as we hoped and look forward to many exciting results to come."

Dr Chris Pearson, European Space Agency support astronomer to the Japanese at JAXA’s Institute of Space and Aeronautical Science (ISAS), said "It is an enormous milestone for all those involved in the AKARI mission to finally see the fruits of their years of hard labour manifested in these breathtaking images of our infrared Universe. The team is now looking forward to producing an atlas of the entire infrared sky in addition to many more such beautiful images"

The Open University, University of Sussex, Imperial College London and SRON/Groningen contribution to AKARI is in critical software involved in translating the data received from the satellite into catalogues of galaxies and stars and images of the sky, using the team’s long experience with previous space telescopes. The team is particularly pleased to be providing the star and galaxy detection software, the final link in the data processing pipe-line."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/ASTRO-F_prelaunch.asp

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>