Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First pictures from the map of the universe mission

23.05.2006


An ambitious mission by the Japan Aerospace Exploration Agency (JAXA) to make a new, high resolution map of the universe has just successfully returned its first pictures, and UK team members are delighted with the success. The AKARI (formerly ASTRO-F) infrared space telescope is making its All-Sky Survey at infrared wavelengths with sharper images and a much higher sensitivity than the first infrared astronomical sky survey satellite launched in 1983. AKARI will leave a tremendous legacy for the future of astronomy. Most of the light ever emitted in the Universe was emitted in the infra-red part of the spectrum, so the range of objects that can be studied by this survey is huge.

Today (May 22nd), at a press conference in Japan, JAXA released spectacular infra-red images of the Nebula IC 4954 that show the birth of stars in their cradle of formation.

“These first images are extremely promising,” said Dr. Stephen Serjeant, Senior Lecturer in Astrophysics at the Open University, said. ”The beautiful filigree structure in the nebula was impossible to see with the previous satellite IRAS. After having worked on this for so many years, it is wonderful to see our labours rewarded so clearly. AKARI can do many things that no other telescope on the Earth or in space can.”



Glenn White, Professor of Astronomy at The Open University and The CCLRC Rutherford Appleton Laboratory, adds: “The AKARI mission will redefine our view of the Universe at infrared wavelengths, achieving considerably sharper images through its improved higher spatial resolution and sensitivity over the whole sky than previously available. It offers a major new observatory facility to probe the cradles of star formation, that are normally obscured from the view of other telescopes, the formation and evolution of planetary systems, and to observe the embryonic galaxies assembling toward the edge of the observable universe. History tells us that any similar step forward in performance over what has gone before, is likely to reveal unexpected new phenomena or classes of objects that can help to redefine our understanding of the Universe”

Dr Richard Savage, postdoctoral research fellow at the University of Sussex, said "It’s wonderful to see the first images coming from the AKARI space telescope, after so much hard work by everyone on the project. It’s particularly gratifying to see how well AKARI is functioning; this bodes extremely well for the science we will be able to produce from the mission."

Michael Rowan-Robinson, Head of Astrophysics at Imperial College London, said: "The great power of the AKARI mission is that it is an all-sky survey in the far infrared with improved sensitivity and greatly improved resolution compared to the IRAS mission of the 1980s. It will be a major step forward at these wavelengths."

Dr. Seb Oliver (Reader in Astronomy at the University of Sussex) says "Dr. Richard Savage and I have just returned from Japan where we spent an exhausting time looking at the first data from Akari. We are delighted that everything appears to be performing just as we hoped and look forward to many exciting results to come."

Dr Chris Pearson, European Space Agency support astronomer to the Japanese at JAXA’s Institute of Space and Aeronautical Science (ISAS), said "It is an enormous milestone for all those involved in the AKARI mission to finally see the fruits of their years of hard labour manifested in these breathtaking images of our infrared Universe. The team is now looking forward to producing an atlas of the entire infrared sky in addition to many more such beautiful images"

The Open University, University of Sussex, Imperial College London and SRON/Groningen contribution to AKARI is in critical software involved in translating the data received from the satellite into catalogues of galaxies and stars and images of the sky, using the team’s long experience with previous space telescopes. The team is particularly pleased to be providing the star and galaxy detection software, the final link in the data processing pipe-line."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/ASTRO-F_prelaunch.asp

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>