Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First pictures from the map of the universe mission

23.05.2006


An ambitious mission by the Japan Aerospace Exploration Agency (JAXA) to make a new, high resolution map of the universe has just successfully returned its first pictures, and UK team members are delighted with the success. The AKARI (formerly ASTRO-F) infrared space telescope is making its All-Sky Survey at infrared wavelengths with sharper images and a much higher sensitivity than the first infrared astronomical sky survey satellite launched in 1983. AKARI will leave a tremendous legacy for the future of astronomy. Most of the light ever emitted in the Universe was emitted in the infra-red part of the spectrum, so the range of objects that can be studied by this survey is huge.

Today (May 22nd), at a press conference in Japan, JAXA released spectacular infra-red images of the Nebula IC 4954 that show the birth of stars in their cradle of formation.

“These first images are extremely promising,” said Dr. Stephen Serjeant, Senior Lecturer in Astrophysics at the Open University, said. ”The beautiful filigree structure in the nebula was impossible to see with the previous satellite IRAS. After having worked on this for so many years, it is wonderful to see our labours rewarded so clearly. AKARI can do many things that no other telescope on the Earth or in space can.”



Glenn White, Professor of Astronomy at The Open University and The CCLRC Rutherford Appleton Laboratory, adds: “The AKARI mission will redefine our view of the Universe at infrared wavelengths, achieving considerably sharper images through its improved higher spatial resolution and sensitivity over the whole sky than previously available. It offers a major new observatory facility to probe the cradles of star formation, that are normally obscured from the view of other telescopes, the formation and evolution of planetary systems, and to observe the embryonic galaxies assembling toward the edge of the observable universe. History tells us that any similar step forward in performance over what has gone before, is likely to reveal unexpected new phenomena or classes of objects that can help to redefine our understanding of the Universe”

Dr Richard Savage, postdoctoral research fellow at the University of Sussex, said "It’s wonderful to see the first images coming from the AKARI space telescope, after so much hard work by everyone on the project. It’s particularly gratifying to see how well AKARI is functioning; this bodes extremely well for the science we will be able to produce from the mission."

Michael Rowan-Robinson, Head of Astrophysics at Imperial College London, said: "The great power of the AKARI mission is that it is an all-sky survey in the far infrared with improved sensitivity and greatly improved resolution compared to the IRAS mission of the 1980s. It will be a major step forward at these wavelengths."

Dr. Seb Oliver (Reader in Astronomy at the University of Sussex) says "Dr. Richard Savage and I have just returned from Japan where we spent an exhausting time looking at the first data from Akari. We are delighted that everything appears to be performing just as we hoped and look forward to many exciting results to come."

Dr Chris Pearson, European Space Agency support astronomer to the Japanese at JAXA’s Institute of Space and Aeronautical Science (ISAS), said "It is an enormous milestone for all those involved in the AKARI mission to finally see the fruits of their years of hard labour manifested in these breathtaking images of our infrared Universe. The team is now looking forward to producing an atlas of the entire infrared sky in addition to many more such beautiful images"

The Open University, University of Sussex, Imperial College London and SRON/Groningen contribution to AKARI is in critical software involved in translating the data received from the satellite into catalogues of galaxies and stars and images of the sky, using the team’s long experience with previous space telescopes. The team is particularly pleased to be providing the star and galaxy detection software, the final link in the data processing pipe-line."

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/ASTRO-F_prelaunch.asp

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>