Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just one nanosecond: Clocking events at the nanoscale

22.05.2006


As scientists and engineers build devices at smaller and smaller scales, grasping the dynamics of how materials behave when they are subjected to electrical signals, sound and other manipulations has proven to be beyond the reach of standard scientific techniques. But now a team of University of Wisconsin-Madison researchers has found a way to time such effects at the nanometer scale, in essence clocking the movements of atoms as they are manipulated using electric fields.

The accomplishment, reported in the most recent edition (May 12, 2006) of the journal Physical Review Letters, is important because it gives scientists a way to probe another dimension of a material’s structure at the scale of nanometers. Adding the dimension of time to their view of the nanoworld promises to enhance the ability to develop materials for improved memory applications in microelectronics of all kinds, among other things.

"Now we have a tool to look inside a device and see how it works at the spatial scale of nanometers and the time scale of nanoseconds," says Alexei Grigoriev, a UW-Madison postdoctoral fellow and the lead author of the Physical Review Letters paper.



With the advent of nanotechnology, the ability to make devices and products on a scale measured in atoms has mushroomed. Already, products with elements fabricated at the nanoscale are on the market, and scientists continue to hone the technology, which has potential applications in areas ranging from digital electronics to toothpaste.

The traditional tools of nanotechnology -- the atomic force microscope and the scanning tunneling microscope -- enable scientists to see atoms, but not their response to events, which at that scale occur on the order of a billionth of a second or less.

The ability to time events that occur in materials used in nanofabrication means that scientists can now view dynamic events at the atomic scale in key materials as they unfold. That ability, in turn, promises a more detailed understanding -- and potential manipulation -- of the properties of those materials.

The Wisconsin work was accomplished using Argonne National Laboratory’s Advanced Photon Source, a synchrotron light source capable of generating very tightly focused beams of X-rays. The Wisconsin researchers, in a group led by materials science and engineering Professor Paul Evans, focused a beam of X-rays on a thin film of a ferroelectric material grown by another Wisconsin group led by materials science and engineering Professor Chang-Beom Eom.

The X-rays, according to Grigoriev, are delivered to the sample in fast pulses over an area no larger than hundreds of nanometers, one ten-millionth of a meter.

Ferroelectric materials respond to electric fields by expanding or contracting their crystal lattice structures. Ferroelectric materials also exhibit the property of remnant polarization, where atoms are rearranged in response to electrical signals. This property allows tiny ferroelectric crystals to be used as elements of digital memories.

"Physically, the atoms switch position," Grigoriev explains. "And as devices are pushed to smaller sizes, they must switch in extremely short times. It requires new tools to see those dynamics."

Using the X-rays from the Advanced Photon Source and measuring how the X-rays were reflected as the atoms in the material switched positions, the Wisconsin researchers were able to clock the event.

As a material is subjected to the X-rays and the electrical signals, "you can see in time how the crystal structure (of the material) changes as the switching polarization propagates through the lattice," Grigoriev explains.

The technique developed by Evans, Grigoriev and their colleagues is a combination of two existing techniques, making the technology easily accessible to science. It might also be applied to studies of phenomena such as magnetism and heat dissipation in microelectronic structures.

Alexei Grigoriev | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>