Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just one nanosecond: Clocking events at the nanoscale

22.05.2006


As scientists and engineers build devices at smaller and smaller scales, grasping the dynamics of how materials behave when they are subjected to electrical signals, sound and other manipulations has proven to be beyond the reach of standard scientific techniques. But now a team of University of Wisconsin-Madison researchers has found a way to time such effects at the nanometer scale, in essence clocking the movements of atoms as they are manipulated using electric fields.

The accomplishment, reported in the most recent edition (May 12, 2006) of the journal Physical Review Letters, is important because it gives scientists a way to probe another dimension of a material’s structure at the scale of nanometers. Adding the dimension of time to their view of the nanoworld promises to enhance the ability to develop materials for improved memory applications in microelectronics of all kinds, among other things.

"Now we have a tool to look inside a device and see how it works at the spatial scale of nanometers and the time scale of nanoseconds," says Alexei Grigoriev, a UW-Madison postdoctoral fellow and the lead author of the Physical Review Letters paper.



With the advent of nanotechnology, the ability to make devices and products on a scale measured in atoms has mushroomed. Already, products with elements fabricated at the nanoscale are on the market, and scientists continue to hone the technology, which has potential applications in areas ranging from digital electronics to toothpaste.

The traditional tools of nanotechnology -- the atomic force microscope and the scanning tunneling microscope -- enable scientists to see atoms, but not their response to events, which at that scale occur on the order of a billionth of a second or less.

The ability to time events that occur in materials used in nanofabrication means that scientists can now view dynamic events at the atomic scale in key materials as they unfold. That ability, in turn, promises a more detailed understanding -- and potential manipulation -- of the properties of those materials.

The Wisconsin work was accomplished using Argonne National Laboratory’s Advanced Photon Source, a synchrotron light source capable of generating very tightly focused beams of X-rays. The Wisconsin researchers, in a group led by materials science and engineering Professor Paul Evans, focused a beam of X-rays on a thin film of a ferroelectric material grown by another Wisconsin group led by materials science and engineering Professor Chang-Beom Eom.

The X-rays, according to Grigoriev, are delivered to the sample in fast pulses over an area no larger than hundreds of nanometers, one ten-millionth of a meter.

Ferroelectric materials respond to electric fields by expanding or contracting their crystal lattice structures. Ferroelectric materials also exhibit the property of remnant polarization, where atoms are rearranged in response to electrical signals. This property allows tiny ferroelectric crystals to be used as elements of digital memories.

"Physically, the atoms switch position," Grigoriev explains. "And as devices are pushed to smaller sizes, they must switch in extremely short times. It requires new tools to see those dynamics."

Using the X-rays from the Advanced Photon Source and measuring how the X-rays were reflected as the atoms in the material switched positions, the Wisconsin researchers were able to clock the event.

As a material is subjected to the X-rays and the electrical signals, "you can see in time how the crystal structure (of the material) changes as the switching polarization propagates through the lattice," Grigoriev explains.

The technique developed by Evans, Grigoriev and their colleagues is a combination of two existing techniques, making the technology easily accessible to science. It might also be applied to studies of phenomena such as magnetism and heat dissipation in microelectronic structures.

Alexei Grigoriev | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>