Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Just one nanosecond: Clocking events at the nanoscale

22.05.2006


As scientists and engineers build devices at smaller and smaller scales, grasping the dynamics of how materials behave when they are subjected to electrical signals, sound and other manipulations has proven to be beyond the reach of standard scientific techniques. But now a team of University of Wisconsin-Madison researchers has found a way to time such effects at the nanometer scale, in essence clocking the movements of atoms as they are manipulated using electric fields.

The accomplishment, reported in the most recent edition (May 12, 2006) of the journal Physical Review Letters, is important because it gives scientists a way to probe another dimension of a material’s structure at the scale of nanometers. Adding the dimension of time to their view of the nanoworld promises to enhance the ability to develop materials for improved memory applications in microelectronics of all kinds, among other things.

"Now we have a tool to look inside a device and see how it works at the spatial scale of nanometers and the time scale of nanoseconds," says Alexei Grigoriev, a UW-Madison postdoctoral fellow and the lead author of the Physical Review Letters paper.



With the advent of nanotechnology, the ability to make devices and products on a scale measured in atoms has mushroomed. Already, products with elements fabricated at the nanoscale are on the market, and scientists continue to hone the technology, which has potential applications in areas ranging from digital electronics to toothpaste.

The traditional tools of nanotechnology -- the atomic force microscope and the scanning tunneling microscope -- enable scientists to see atoms, but not their response to events, which at that scale occur on the order of a billionth of a second or less.

The ability to time events that occur in materials used in nanofabrication means that scientists can now view dynamic events at the atomic scale in key materials as they unfold. That ability, in turn, promises a more detailed understanding -- and potential manipulation -- of the properties of those materials.

The Wisconsin work was accomplished using Argonne National Laboratory’s Advanced Photon Source, a synchrotron light source capable of generating very tightly focused beams of X-rays. The Wisconsin researchers, in a group led by materials science and engineering Professor Paul Evans, focused a beam of X-rays on a thin film of a ferroelectric material grown by another Wisconsin group led by materials science and engineering Professor Chang-Beom Eom.

The X-rays, according to Grigoriev, are delivered to the sample in fast pulses over an area no larger than hundreds of nanometers, one ten-millionth of a meter.

Ferroelectric materials respond to electric fields by expanding or contracting their crystal lattice structures. Ferroelectric materials also exhibit the property of remnant polarization, where atoms are rearranged in response to electrical signals. This property allows tiny ferroelectric crystals to be used as elements of digital memories.

"Physically, the atoms switch position," Grigoriev explains. "And as devices are pushed to smaller sizes, they must switch in extremely short times. It requires new tools to see those dynamics."

Using the X-rays from the Advanced Photon Source and measuring how the X-rays were reflected as the atoms in the material switched positions, the Wisconsin researchers were able to clock the event.

As a material is subjected to the X-rays and the electrical signals, "you can see in time how the crystal structure (of the material) changes as the switching polarization propagates through the lattice," Grigoriev explains.

The technique developed by Evans, Grigoriev and their colleagues is a combination of two existing techniques, making the technology easily accessible to science. It might also be applied to studies of phenomena such as magnetism and heat dissipation in microelectronic structures.

Alexei Grigoriev | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>