Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s new camera follows disintegration of a comet

19.05.2006


The continuing disintegration of Comet 73P/Schwassmann-Wachmann 3 has allowed ESA scientists to see into the interior of the comet. Using a revolutionary camera attached to the ESA Optical Ground Station on Tenerife, they have followed the detailed twists and turns of various comet fragments.



The superconducting camera, SCAM, is an ultra fast photon counting camera, developed by ESA. It is cooled to just 300 thousandths of a degree above absolute zero. This enables its sensitive electronic detectors, known as superconducting tunnel detectors, to register almost every single photon of light that falls into it. As such, it is the perfect instrument with which to detect fast and faint changes in the fragments of the comet.

Comet 73P/Schwassmann-Wachmann 3 is a short-period comet that approaches the Sun every 5.4 years. Two apparitions ago, in 1996, the comet nucleus split into five pieces (Fragments A, B, C, D, E) of which 3 (B, C, E) were still visible at its 2001 return.


When it approached the Sun again this year, seven fragments were initially observed, indicating that the comet was breaking apart again. Indeed, as astronomers watched, further fragments broke off. Fragment B alone produced at least seven new pieces. At present, about 40 fragments are visible, most of which are likely to be very small and with irregular and short-lived activity.

SCAM was attached to the one-metre ESA Optical Ground Station telescope on 7 May 2006, when the disintegrating comet was observed . Every few microseconds, the camera reads out the number of photons that have touched it and their colour. Using the unprecedented accuracy of the camera, ESA scientists charted the evolution of the dust and gas envelopes associated with each fragment for two hours. Now they must analyse the results.

In particular they will be looking for differences in the size and shape of the fragments and also any colour differences between them that might indicate compositional differences. Other studies are made possible by SCAM’s unrivalled time resolution. Outbursts and activity from each fragment can be traced down to changes that occur on a timescale of one minute. In addition, as the dust and gas particles released from the fragments move with velocities between 0.5 and 1 kilometres per second, the observations will allow the interaction of the gas and dust flow to be studied for the two fragments closest to one another.

Comet 73P/Schwassmann-Wachmann 3 is one of the comets that was considered as a potential target for ESA’s Rosetta mission. In 1995 even before its initial splitting, it was abandoned in favour of comet 46P/Wirtanen. After the launch delay of 2003, ESA decided not to re-select 73P/Schwassmann-Wachmann 3 as the replacement Rosetta target, because of the comet’s volatile behaviour. In 2014, Rosetta will rendezvous and land on the Jupiter-family comet 67P/Churyumov-Gerasimenko.

Monica Talevi | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEMN1C9ATME_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>