Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MAGIC discovers variable very high energy gamma-ray emission from a microquasar

19.05.2006


In a recent issue of Science Magazine, the Major Atmospheric Gamma-ray ImagingCherenkov (MAGIC) Telescope has reported the discovery of variable very high energy (VHE) gamma-ray emission from a microquasar. Microquasars are binary star systems, composed of a massive ordinary star and a compact object, which can be either a neutron star or a black hole (see Fig. 1). The stars orbit around one another and, when they are close enough, there is a transfer of matter from the massive one toward the compact object, due to gravitational attraction. This matter forms a disk around the compact object and is heated-up due to viscosity, producing X-rays. In addition, the collapse of matter from the disk into the compact object produces the ejection of jets of particles that travel in opposite directions at velocities close to the speed of light. In particular the jets contain electrons that undergo the so-called synchrotron radiation, which can be detected by radio telescopes. These jets remain among the most spectacular, yet poorly explained astrophysical phenomena. Microquasars can be considered as scaled-down versions of active galactic nuclei, or quasars. Quasars display also jets of relativistic particles, but in their case the compact object is a black hole of millions of solar masses located at the center of a galaxy. In contrast to quasars, where phenomena of jet formation and matter ejection can take years, microquasar jets evolve in time scales of days, a fact that makes them more suitable for human observations. Microquasars are also candidates to be one of the sites of production of the cosmic rays, a mystery unsolved since their discovery almosta hundred years ago.



The study of microquasars represents one of the most important additions to the recently born field of VHE gamma-ray astrophysics. VHE gamma-rays are a kind of radiation which is produced in the most violent phenomena of our Universe, like e.g. supernova explosions or quasars. They can reach the Earth, albeit at a very low rate (typically less than one gamma-ray per square meter and per week). MAGIC detects gamma-rays through the short light flashes that they produce as they enter the atmosphere. MAGIC is the largest telescope exploiting this experimental technique, with a 17 m diameter mirror. It is located at the observatory Roque de los Muchachos on the Canary Island of La Palma (Spain). The MAGIC team is composed of more than 130 scientists coming from 9 countries, namely: Spain, Germany, Italy, Switzerland, Poland, Armenia, Finland, Bulgaria and USA.

MAGIC has observed, between October 2005 and March 2006, one of the approximately 20 known microquasars, called LS I +61 303. VHE gamma-rays coming from LS I +61 303 have been detected at an approximate rate of one gamma-ray per square meter and per month. Only one other binary star system (LS 5039) is known to emit VHE gamma-rays. This new discovery points to the fact that gamma-ray production could be a common property of microquasars. The results of the MAGIC team have revealed a very interesting property: the intensity of the gamma-ray emission coming from LS I +61 303 varies with time (see Fig. 2). The binary system was observed at different 2 moments along the orbital cycle of the compact object around the massive star. The time scale of variability was similar to the orbital period, showing that the VHE emission is directly related to the interplay between the two stars of the system. Furthermore, some theorists expected the gamma-ray emission to happen when the two stars are closest to one another (i.e. at periastron passage, Fig. 2a) since it is at this moment when the particles accelerated in the jet find the largest density of potential targets to produce the gammarays. However, a relatively strong gamma-ray flux was observed only when the compact object had completed about one third of the whole orbital cycle (Fig 2b). Future observations of LS I +61 303 with MAGIC, together with theoretical interpretation of the present results will help elucidate the mechanisms of gamma-ray production and absorption in microquasars and in objects displaying relativistic jets in general.

Lucas Santos Botana | alfa
Further information:
http://magic.ifae.es/LSI
http://www.uab.es

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>