Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

French-German Group Verifies High-Temperature Superconductivity Theory Proposed by UCR Physicist

18.05.2006


Experimental results could point the way to fabricating room temperature superconductors and solving a major mystery in physics


A 1996 theory by UCR’s Chandra Varma notes that in copper oxide materials superconductivity is associated with the formation of a new state of matter in which electric current loops form spontaneously, going from copper to oxygen atoms and back to copper. Recently, a French-German team of experimental scientists directly observed the current loops. Credit: C. Varma



A French-German team of experimental scientists, led by Philippe Bourges of the Commissariat à l’Energie Atomique, France, reports that it has verified the central prediction of a theory on high-temperature superconductivity developed by Chandra Varma, distinguished professor of physics at UC Riverside. The verification ultimately could assist in the fabrication of materials that are superconducting at room temperature and help settle a contentious, international debate on the fundamental physics of superconductivity and emergent states of matter.

Varma’s initial theory, which he proposed in 1989 when he was at Bell Laboratories, stated the radical idea that high temperature superconductivity and related phenomena occur in certain materials because quantum-mechanical fluctuations in these materials increase as temperature decreases. Usually such fluctuations, which determine the properties of all matter in the universe, decrease as temperature decreases.


Varma’s theory did not explain the nature of the fluctuations; he accomplished this in a theory he proposed in 1996, while still at Bell Labs, in which he noted that in copper oxide materials, also known as cuprates, superconductivity is associated with the formation of a new state of matter in which electric current loops form spontaneously, going from copper to oxygen atoms and back to copper. His theory concluded that the quantum-mechanical fluctuations are the fluctuations of these current loops. Physicists consider these fluctuations in the current loops to be fluctuations of time.

Bourges’s group directly observed the current loops in experiments involving the diffraction of polarized neutrons. In these experiments a beam of neutrons changes direction as well as the direction of its magnetization in a manner that is closely related to the geometrical arrangement of the current loops inside the material in which the beam is made to pass.

"Currently, there is much debate among researchers working on superconductivity about what exactly happens in cuprates," said Varma, who joined UCR in 2003 and was a Bell Labs researcher from 1969 to 2001. "Further experiments of the kind by Bourges’s group should help bring a consensus in the scientific community about the fundamental physics involved in cuprates."

The results of Bourges’s experiments appear in the May 19 issue of Physical Review Letters.

"Chandra Varma has been a pioneer in the theory of high-temperature superconductivity since its discovery 20 years ago, and Bell Labs is delighted to see confirmation of his microscopic theory by the neutron scattering experiments of Bourges and coworkers," said Arthur Ramirez, director of Device Physics Research at Lucent Technologies Bell Labs. "The confirmation of this theory could become a turning point for research we and other laboratories are performing on high-temperature superconductivity."

Before Bourges’s group observed the current loops Varma predicted, an experiment performed in 2002 by a group of scientists at Argonne National Laboratory and the University of Illinois, Chicago, discovered the current loops in an indirect way by using an experimental technique Varma suggested in 2000.

"The fact that two experiments came to the same conclusion with different techniques and in different cuprate compounds lends great confidence in the results," said Harry Tom, chair of the Department of Physics at UCR. "A microscopic theory of high temperature superconductivity might also suggest ways of fabricating room temperature superconductors, possibly with materials more amenable to industrial fabrication than the cuprates."

Superconductors are materials that conduct electricity with near-zero resistance below a specific temperature, known as the critical temperature. Superconductors typically find use in electric power transformers and magnetic resonance imaging machines. Conventional metallic superconductors must be cooled below -424 F to become superconducting.

High-temperature superconductors, which are almost always some type of cuprate ceramic doped with a variety of elements, conduct electricity with near-zero resistance at temperatures as high as -226 F.

High-temperature superconductivity in compounds of copper, oxygen and other elements were discovered in 1986 by Swiss scientists, Georg Bednorz and Alex Müller. Both scientists were awarded the 1987 Nobel Prize in physics "for their important break-through in the discovery of superconductivity in ceramic materials."

"While our results are exciting, our specific approach needs to be checked by another neutron group," said Bourges. "My group plans to design refined experiments to improve the data and verify the theory in more detail."

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>