Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the hype and the scare stories, how safe are nanoparticles?

18.05.2006


Nanotechnology has been touted as the next technology revolution, transforming everything from communications to medicine, water decontamination to homeland security. But scientific progress has been accompanied by fears over unknown consequences of nanotechnology, with one pressure group even calling for a moratorium on all research until more is known. More specific concerns have been voiced by various parties – including the UK Royal Society and Royal Academy of Engineering – about exposure to manufactured nano-sized particles and the possible harmful effects on human health.



The future success of nanotechnology will depend on rational and informed work to understand and minimize these potential adverse effects on health and the environment. This is where Andrew Maynard of the Woodrow Wilson International Center for Scholars steps in. He explains what is known about effects of nanoparticles on the body in the latest issue of Nano Today magazine.

“We need to understand both how harmful a substance is, and how much of it can get into the body, if risk is to be understood and managed,” says Maynard.


Nanoparticles may have greater reactivity, and so toxicity, than larger sized particles. Because of their size, nanoparticles may also evade some of the body’s natural defense systems and accumulate in some tissues. But currently, there is little information on the impact of engineered nanoparticles, and what there is can be contradictory.

Maynard begins by saying that not all nanomaterials are likely to be of concern. He sets out from the vast range of available nanoscale materials those that are likely to be relevant to human health. Maynard then reviews what has been established about the behavior of nanomaterials in the body, considering how nanoparticles may get into the body via the lungs, skin, or digestive system as well as possible toxic effects.

But risks from even harmful nanoparticles only arise if there has been exposure to a high enough dose. The current picture of how nanomaterials might be released and dispersed in the environment is described in the article, as well as ways of measuring exposure.

“Not only is it necessary to consider the potential for engineered nanomaterials to be released in a form that leads to exposure, chemical and structural transformations between the point of release and the point of exposure will also likely determine health impact,” explains Maynard.

Maynard suggests how potential risks should be managed alongside public awareness of the issues. By providing a context for considering these risks, he is able to suggest directions for further work to ensure the development of safe nanotechnology-based products.

This article appears in the May issue of Nano Today magazine, which covers current issues in nanotechnology. Highlights from the other articles include:

* While the potential harmful effects of nanoparticles in the environment are often highlighted, one beneficial proposed application is the removal of contaminants from groundwater. Paul G. Tratnyek and Richard L. Johnson from Oregon Health & Science University discuss the benefits and remaining uncertainties of the remediation of contaminated groundwater using nanoparticles containing zero-valent iron (nZVI).

* There are already over 200 products on the market that include nanosized materials or components, according to a recent report. The growing commercialization of products exploiting nanomaterials has been accompanied by increasing calls for regulation. Paula Gould investigates how regulatory bodies are approaching the problems of agreeing measurement standards and regulating exposure to nanoparticles.

* R. P. H. Chang of Northwestern University believes we should make the most of the excitement and novelty surrounding ‘nano’ to spark young people’s interest in science. Certainly, various nanoscience courses have been put together around the world for undergraduates, postgraduates, and even school children. Peter Goodhew of the University of Liverpool, UK looks at how these courses have sought to balance teaching new nano-related material with the basics of conventional science.

James Quinney | alfa
Further information:
http://www.nanotoday.com

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>