Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the hype and the scare stories, how safe are nanoparticles?

18.05.2006


Nanotechnology has been touted as the next technology revolution, transforming everything from communications to medicine, water decontamination to homeland security. But scientific progress has been accompanied by fears over unknown consequences of nanotechnology, with one pressure group even calling for a moratorium on all research until more is known. More specific concerns have been voiced by various parties – including the UK Royal Society and Royal Academy of Engineering – about exposure to manufactured nano-sized particles and the possible harmful effects on human health.



The future success of nanotechnology will depend on rational and informed work to understand and minimize these potential adverse effects on health and the environment. This is where Andrew Maynard of the Woodrow Wilson International Center for Scholars steps in. He explains what is known about effects of nanoparticles on the body in the latest issue of Nano Today magazine.

“We need to understand both how harmful a substance is, and how much of it can get into the body, if risk is to be understood and managed,” says Maynard.


Nanoparticles may have greater reactivity, and so toxicity, than larger sized particles. Because of their size, nanoparticles may also evade some of the body’s natural defense systems and accumulate in some tissues. But currently, there is little information on the impact of engineered nanoparticles, and what there is can be contradictory.

Maynard begins by saying that not all nanomaterials are likely to be of concern. He sets out from the vast range of available nanoscale materials those that are likely to be relevant to human health. Maynard then reviews what has been established about the behavior of nanomaterials in the body, considering how nanoparticles may get into the body via the lungs, skin, or digestive system as well as possible toxic effects.

But risks from even harmful nanoparticles only arise if there has been exposure to a high enough dose. The current picture of how nanomaterials might be released and dispersed in the environment is described in the article, as well as ways of measuring exposure.

“Not only is it necessary to consider the potential for engineered nanomaterials to be released in a form that leads to exposure, chemical and structural transformations between the point of release and the point of exposure will also likely determine health impact,” explains Maynard.

Maynard suggests how potential risks should be managed alongside public awareness of the issues. By providing a context for considering these risks, he is able to suggest directions for further work to ensure the development of safe nanotechnology-based products.

This article appears in the May issue of Nano Today magazine, which covers current issues in nanotechnology. Highlights from the other articles include:

* While the potential harmful effects of nanoparticles in the environment are often highlighted, one beneficial proposed application is the removal of contaminants from groundwater. Paul G. Tratnyek and Richard L. Johnson from Oregon Health & Science University discuss the benefits and remaining uncertainties of the remediation of contaminated groundwater using nanoparticles containing zero-valent iron (nZVI).

* There are already over 200 products on the market that include nanosized materials or components, according to a recent report. The growing commercialization of products exploiting nanomaterials has been accompanied by increasing calls for regulation. Paula Gould investigates how regulatory bodies are approaching the problems of agreeing measurement standards and regulating exposure to nanoparticles.

* R. P. H. Chang of Northwestern University believes we should make the most of the excitement and novelty surrounding ‘nano’ to spark young people’s interest in science. Certainly, various nanoscience courses have been put together around the world for undergraduates, postgraduates, and even school children. Peter Goodhew of the University of Liverpool, UK looks at how these courses have sought to balance teaching new nano-related material with the basics of conventional science.

James Quinney | alfa
Further information:
http://www.nanotoday.com

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>