Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buckyballs make room for gilded cages

17.05.2006


Carbon fullerenes now have metallic cousins, ‘hollow golden cages’


Au16, the world’s smallest hollow gold cage.



Scientists have uncovered a class of gold atom clusters that are the first known metallic hollow equivalents of the famous hollow carbon fullerenes known as buckyballs.
The evidence for what their discoverers call "hollow golden cages" appeared today in the online early edition of the Proceedings of the National Academy of Sciences.

The fullerene is made up of a sphere of 60 carbon (C) atoms; gold (Au) requires many fewer--16, 17 and 18 atoms, in triangular configurations more gem-like than soccer ball. At more than 6 angstroms across, or roughly a ten-millionth the size of this comma, they are nonetheless roomy enough to cage a smaller atom.



"This is the first time that a hollow cage made of metal has been experimentally proved," said Lai-Sheng Wang, the paper’s lead corresponding author.

Wang is an affiliate senior chief scientist at the Department of Energy’s Pacific Northwest National Laboratory and professor of physics at Washington State University. The experiments were buttressed and the clusters’ geometry deciphered from theoretical calculations led by Professor Xiao Cheng Zeng of the University of Nebraska and co-corresponding author.

Wang, who worked in the Richard Smalley lab that gave the world buckyballs, is part of a large cluster of researchers who have spent much of the past decade attempting to find the fullerene’s kin in metal. But their search has proved difficult because of metal clusters’ tendency to compact or flatten.

Experiments at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory elicited the photoelectron spectra of clusters smaller than Au32, which had been theorized as the gold-cage analog to C60 but ruled out by Wang’s group in an experiment that showed it as being a compact clump.

They instead turned their attention to clusters smaller than 20 atoms, which earlier work by Wang’s group showed were 3-D-- a golden pyramid, no less--but larger than 13 atoms, known to be flat. The spectra and calculations showed that clusters of 15 atoms or fewer remained flat but that all but one possible configuration of 16, 17 and 18 atoms open in the middle. At 19 atoms, the spaces fill in again to form a near-pyramid.

"Au-16 is beautiful and can be viewed as the smallest golden cage," Wang said. He pictures it as having "removed the four corner atoms from our Au20 pyramid and then letting the remaining atoms relax a little," and thus opening up space in its center.

It and its larger neighbors are stable at room temperature and are known as "free-standing" cages--unattached to a surface or any other body, in a vacuum. "When deposited on a surface, the cluster may interact with the surface and the structure may change."

Wang and his co-workers suspect "that many different kinds of atoms can be trapped inside" these hollow clusters, a process called "doping." "These doped cages may very well survive on surfaces," suggesting a method for influencing physical and chemical properties at smaller-than-nano scales, "depending on the dopants."

Wang’s group has not yet attempted to imprison a foreign atom in the hollow Au cages, but they plan to try.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>