Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin Explosions In Gigantic Dusty Potato Crisp

12.05.2006


The beautiful edge-on spiral galaxy NGC 3190 with tightly wound arms and a warped shape that makes it resemble a gigantic potato crisp, as seen by ESO’s Very Large Telescope.


ESO’s Very Large Telescope, equipped with the multi-mode FORS instrument, took an image of NGC 3190, a galaxy so distorted that astronomers gave it two names. And as if to prove them right, in 2002 it fired off, almost simultaneously, two stellar explosions, a very rare event.

This beautiful edge-on spiral galaxy with tightly wound arms and a warped shape that makes it resemble a gigantic potato crisp lies in the constellation Leo (‘the Lion’) [1] and is approximately 70 million light years away. It is the dominant member of a small group of galaxies known as Hickson 44, named after the Canadian astronomer, Paul Hickson. In addition to NGC 3190 [2], Hickson 44 consists of one elliptical and two spiral galaxies. These are, however, slightly out of the field of view and therefore not visible here.

In 1982, Hickson published a catalogue of over 400 galaxies found in compact, physically-related groups of typically 4 to 5 galaxies per group (see the image of Robert’s Quartet in ESO PR Photo 34/05 as another example). Such compact groups allow astronomers to study how galaxies dynamically affect each other, and help them test current ideas on how galaxies form. One idea is that compact groups of galaxies, such as Hickson 44, merge to form a giant elliptical galaxy, such as NGC 1316 (see ESO PR 17/00).



Indeed, signs of tidal interactions are visible in the twisted dust lane of NGC 3190. This distortion initially misled astronomers into assigning a separate name for the southwestern side, NGC 3189, although NGC 3190 is the favoured designation.

NGC 3190 has an ‘Active Galactic Nucleus’, and as such, the bright, compact nucleus is thought to host a supermassive black hole.

In March 2002, a new supernova (SN 2002bo) was found in between the ’V’ of the dust lanes in the south-western part of NGC 3190. It was discovered independently by the Brazilian and Japanese amateur astronomers, Paulo Cacella and Yoji Hirose. SN 2002bo was caught almost two weeks before reaching its maximum brightness, allowing astronomers to study its evolution. It has been the subject of intense monitoring by a world-wide network of telescopes. The conclusion was that SN 2002bo is a rather unusual Type Ia supernova [3]. The image presented here was taken in March 2003, i.e. about a year after the maximum of the supernova which is 50 times fainter on the image than a year before.

While observing SN 2002bo in May 2002, a group of Italian astronomers discovered another supernova, SN 2002cv, on the other side of NGC 3190. Two supernovae of this type appearing nearly simultaneously in the same galaxy is a rare event, as normally astronomers expect only one such event per century in a galaxy. SN 2002cv was best visible at infrared wavelengths as it was superimposed on the dust lane of NGC 3190, and therefore hidden by a large quantity of dust. In fact, this supernova holds the record for the most obscured Type Ia event.

The image was obtained with a total exposure time of 14 minutes only. Yet, with the amazing power of the Very Large Telescope, it reveals a large zoo of galaxies of varying morphologies. How many can you find?

Notes

[1] The constellation "Leo" represents the Lion. Many ancient civilisations, e.g. Sumerian, Babylonian, Persian, Syrian, Greek, all identified this constellation as a lion. In Greek Mythology, the first of Hercules’ twelve tasks was to slay the Nemean lion and bring back its skin.

[2] ‘NGC’ stands for ‘New General Catalogue’ (of nebulae and clusters) that was published in 1888 by J.L.E. Dreyer in the ‘Memoirs of the Royal Astronomical Society’.

[3] Type Ia supernovae are believed to result from the explosion of old stars known as ‘white dwarfs’ - the endpoint of most low mass stars such as our Sun. However, a white dwarf only explodes when its mass reaches a certain critical value (about 1.4 times the mass of our Sun). The general consensus is that this critical mass can only be attained if the white dwarf has a nearby companion star from which it can gain matter. Their generally uniform properties combined with their intrinsic brightness means that Type Ia supernovae can be used to measure relative distances (see ESO PR 21/98). They have been used to infer that the Universe is currently accelerating.

SN 2002bo has been extensively studied by Benetti et al. (2004, MNRAS, 348, 261), while SN 2002cv has been described by Di Paola et al. (2002,
A&A, 393, L21).

Technical Information: ESO PR Photo 17/06 is based on data extracted from the ESO Science Archive. It is a colour composite based on images obtained on 26 March 2003 with FORS1 on UT2 (Kueyen) in four filters (B, V, R and I) for a total exposure time of 14 minutes. The observations were done in the framework of a programme aiming at studying the physics of Type Ia supernovae. The field of view is 6.15 x 5 arcminutes. North is up and East is to the left. The data extraction from the archive, data reduction and final colour processing of the image was done by Henri Boffin (ESO).

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-17-06.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>