Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New capture scenario explains origin of Neptune’s oddball moon Triton

11.05.2006


Neptune’s large moon Triton may have abandoned an earlier partner to arrive in its unusual orbit around Neptune. Triton is unique among all the large moons in the solar system because it orbits Neptune in a direction opposite to the planet’s rotation (a "retrograde" orbit). It is unlikely to have formed in this configuration and was probably captured from elsewhere.



In the May 11 issue of the journal Nature, planetary scientists Craig Agnor of the University of California, Santa Cruz, and Douglas Hamilton of the University of Maryland describe a new model for the capture of planetary satellites involving a three-body gravitational encounter between a binary and a planet. According to this scenario, Triton was originally a member of a binary pair of objects orbiting the Sun. Gravitational interactions during a close approach to Neptune then pulled Triton away from its binary companion to become a satellite of Neptune.

"We’ve found a likely solution to the long-standing problem of how Triton arrived in its peculiar orbit. In addition, this mechanism introduces a new pathway for the capture of satellites by planets that may be relevant to other objects in the solar system," said Agnor, a researcher in UCSC’s Center for the Origin, Dynamics, and Evolution of Planets.


With properties similar to the planet Pluto and about 40 percent more massive, Triton has an inclined, circular orbit that lies between a group of small inner moons with prograde orbits and an outer group of small satellites with both prograde and retrograde orbits. There are other retrograde moons in the solar system, including the small outer moons of Jupiter and Saturn, but all are tiny compared to Triton (less than a few thousandths of its mass) and have much larger and more eccentric orbits about their parent planets.

Triton may have come from a binary very similar to Pluto and its moon Charon, Agnor said. Charon is relatively massive, about one-eighth the mass of Pluto, he explained.

"It’s not so much that Charon orbits Pluto, but rather both move around their mutual center of mass, which lies between the two objects," Agnor said.

In a close encounter with a giant planet like Neptune, such a system can be pulled apart by the planet’s gravitational forces. The orbital motion of the binary usually causes one member to move more slowly than the other. Disruption of the binary leaves each object with residual motions that can result in a permanent change of orbital companions. This mechanism, known as an exchange reaction, could have delivered Triton to any of a variety of different orbits around Neptune, Agnor said.

An earlier scenario proposed for Triton is that it may have collided with another satellite near Neptune. But this mechanism requires the object involved in the collision to be large enough to slow Triton down, but small enough not to destroy it. The probability of such a collision is extremely small, Agnor said.

Another suggestion was that aerodynamic drag from a disk of gas around Neptune slowed Triton down enough for it to be captured. But this scenario puts constraints on the timing of the capture event, which would have to occur early in Neptune’s history when the planet was surrounded by a gas disk, but late enough that the gas would disperse before it slowed Triton’s orbit enough to send the moon crashing into the planet.

In the past decade, many binaries have been discovered in the Kuiper belt and elsewhere in the solar system. Recent surveys indicate that about 11 percent of Kuiper belt objects are binaries, as are about 16 percent of near-Earth asteroids.

"These discoveries pointed the way to our new explanation of Triton’s capture," Hamilton said. "Binaries appear to be a ubiquitous feature of small-body populations."

The Pluto/Charon pair and binaries in the Kuiper belt are especially relevant for Triton, as their orbits abut Neptune’s, he said.

"Similar objects have probably been around for billions of years, and their prevalence indicates that the binary-planet encounter that we propose for Triton’s capture is not particularly restrictive," Hamilton said.

The exchange reaction described by Agnor and Hamilton may have broad applications in understanding the evolution of the solar system, which contains many irregular satellites. The researchers plan to explore the implications of their findings for other satellite systems.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>