Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton reveals the origin of elements in galaxy clusters

11.05.2006


Deep observations of two X-ray bright clusters of galaxies with ESA’s XMM-Newton satellite allowed a group of international astronomers to measure their chemical composition with an unprecedented accuracy. Knowing the chemical composition of galaxy clusters is of crucial importance to understanding the origin of chemical elements in the Universe.



Clusters, or conglomerates, of galaxies are the largest objects in the Universe. By looking at them through optical telescopes it is possible to see hundreds or even thousands of galaxies occupying a volume a few million light years across. However, such telescopes only reveal the tip of the iceberg. In fact most of the atoms in galaxy clusters are in the form of hot gas emitting X-ray radiation, with the mass of the hot gas five times larger than the mass in the cluster’s galaxies themselves.

Most of the chemical elements produced in the stars of galaxy clusters - expelled into the surrounding space by supernova explosions and by stellar winds - become part of the hot X-ray emitting gas. Astronomers divide supernovae into two basic types: ‘core collapse’ and ‘Type Ia’ supernovae. The ‘core collapse’ supernovae originate when a star at the end of its life collapses into a neutron star or a black hole. These supernovae produce lots of oxygen, neon and magnesium. The Type Ia supernovae explode when a white dwarf star consuming matter from a companion star becomes too massive and completely disintegrates. This type produces lots of iron and nickel.


Respectively in November 2002 and August 2003, and for one and a half day each time, XMM-Newton’s made deep observations of the two galaxy clusters called ‘Sersic 159-03’ and ‘2A 0335+096’. Thanks to these data the astronomers could determine the abundances of nine chemical elements in the clusters ‘plasma’ – a gas containing charged particles such as ions and electrons.

These elements include oxygen, iron, neon, magnesium, silicon, argon, calcium, nickel, and - detected for the first time ever in a galaxy cluster - chromium. "Comparing the abundances of the detected elements to the yields of supernovae calculated theoretically, we found that about 30 percent of the supernovae in these clusters were exploding white dwarfs (‘Type Ia’) and the rest were collapsing stars at the end of their lives (‘core collapse’)," said Norbert Werner, from the SRON Netherlands Institute for Space Research (Utrecht, Netherlands) and one of the lead authors of these results.

"This number is in between the value found for our own Galaxy (where Type Ia supernovae represent about 13 percent of the supernovae ‘population’) and the current frequency of supernovae events as determined by the Lick Observatory Supernova Search project (according to which about 42 percent of all observed supernovae are Type Ia)," he continued.

The astronomers also found that all supernova models predict much less calcium than what is observed in clusters and that the observed nickel abundance cannot be reproduced by these models. These discrepancies indicate that that the details of supernova enrichment is not yet clearly understood. Since clusters of galaxies are believed to be fair samples of the Universe, their X-ray spectroscopy can help to improve the supernova models.

The spatial distribution of elements across a cluster also holds information about the history of clusters themselves. The distribution of elements in 2A 0335+096 indicates an ongoing merger. The distribution of oxygen and iron across Sersic 159-03 indicates that while most of the enrichment by the core collapse supernovae happened long time ago, Type Ia supernovae still continue to enrich the hot gas by heavy elements especially in the core of the cluster.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEM94Q8ATME_index_0.html

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>