Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics in Universe’s Youth

08.05.2006


With ESO’s VLT, astronomers find molecular hydrogen at edge of Universe



Using a quasar located 12.3 billion light-years away as a beacon, a team of astronomers detected the presence of molecular hydrogen in the farthest system ever, an otherwise invisible galaxy that we observe when the Universe was less than 1.5 billion years old, that is, about 10% of its present age. The astronomers find that there is about one hydrogen molecule for 250 hydrogen atoms. A similar set of observations for two other quasars, together with the most precise laboratory mea–surements, allows scientists to infer that the ratio of the proton to electron masses may have changed with time. If confirmed, this would have important consequences on our understanding of physics.

"Detecting molecular hydrogen and measuring its properties in the most remote parts of the Universe is important to understand the gas environment and determine the rate of star formation in the early Universe", said Cédric Ledoux, lead-author of the paper presenting the results [1].


Although molecular hydrogen is the most abundant molecule in the Universe, it is very difficult to detect directly. For the time being, the only way to detect it directly in the far Universe is to search for its telltale signatures in the spectra of quasars or gamma-ray burst afterglows. This requires high spectral resolution and large telescopes to reach the necessary precision.

A team of astronomers, comprised of Cédric Ledoux (ESO), Patrick Petitjean (IAP, Paris, France) and Raghunathan Srianand (IUCAA, Pune, India), is conducting a survey for molecular hydrogen at high redshift using the Ultraviolet and Visible Echelle Spectrograph (UVES) at ESO’s Very Large Telescope. Out of the 75 systems observed up to now, 14 have firm detection of molecular hydrogen. Among these, one is found having a redshift of 4.224.

While using the 12.3 billion light-years distant quasar PSS J 1443+2724 as a beacon, the astronomers detected several features belonging to an unseen galaxy having a redshift of 4.224. In particular, many lines from molecular hydrogen were found, breaking the record for the detection of this element in the farthest object in the Universe. This also implies that the gas in this galaxy must be rather cold, about -90 to -180 degrees Celsius.

In addition, several lines from ’metals’ are also seen, allowing the researchers to deduce the amount of various chemical elements.
"From the abundance of Nitrogen observed, we argue that it had to be produced in the late stage of the life of 4 to 8 solar mass stars," said Patrick Petitjean. "Thus, star-formation activity must have formed at least 200 to 500 million years before we are observing the galaxy, that is, when the Universe was about one billion years old" [2].

If the galaxy went through a phase of intense star-formation activity, it is now, at the time of the observations, in a rather quiescent state.
"These observations demonstrate the possibility to perform these studies at the highest redshift with ESO’s VLT", said Raghunathan Srianand. "In particular, the possibility to observe the interstellar medium of distant galaxies revealed by using gamma-ray bursts as beacons will boost this field in the near future." [3]

A similar set of accurate measurements of molecular hydrogen lines was made by the astronomers [4] with UVES on the VLT towards two others quasars, Q 0405-443 and Q 0347-383.

This set of data allowed the scientists to compare the ratio of the mass of a proton to that of an electron in molecular hydrogen as it is now and how it was about 12 billion years ago [5]. To this aim, they performed extremely accurate measurements of spectral lines of hydrogen molecules in the laboratory and compared the results with the same lines observed in the spectra of these quasars.

These measurements show that the mass ratio of the proton and the electron may have changed, becoming 0.002% smaller in the past twelve billion years. Albeit such a change may look tiny, it would have important consequences on our understanding of physics. The scientists stress however that their result is just an ’indication’, not yet a ’proof’ and that it should be confirmed by further measurements, both astronomical and in the laboratory.

Notes

[1]: The results are described in a paper accepted for publication in the Astrophysical Journal Letters ("Molecular Hydrogen in a Damped Lyman-a system at zabs=4.224", by C. Ledoux, P. Petitjean, and R. Srianand).

[2]: 200 to 500 million years is indeed the time necessary for a star with a mass between 4 and 8 solar masses to synthesise and expel into the Interstellar Medium the Nitrogen that is observed.

[3]: Using these observations, but looking at Carbon instead of Hydrogen, the authors were able to derive the temperature of the Microwave Background at this epoch. This fossil radiation has been emitted as a direct consequence of the Big Bang, when the Universe was only 300 000 years old and had, at that time, a temperature of 3 000 K. As the Universe expands, it gets cooler and this temperature has dropped to only 3 K (-270 degrees Celsius) nowadays. The astronomers measure that when it was 1.5 billion years old, the Universe had a temperature of 14 K (-259 degrees Celsius), in agreement with the Big Bang theory.

[4]: This study appeared in 2005 in Astronomy and Astrophysics, vol. 440, p. 45 ("A new constraint on the time dependence of the proton-to-electron mass ratio. Analysis of the Q 0347-383 and Q 0405-443 spectra", by A. Ivanchik et al.). See also ESO PR 05/04 on results about the possible variation of the fine-structure constant over cosmological time by the same team.

[5]: This finding is reported in the April 21 issue of Physical Review Letters ("Indication of a cosmological variation of the proton-to-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra", by E. Reinhold et al.). The laboratory measurements were performed with a special laser, developed in the Laser Centre VU Amsterdam, operating at the specific wavelengths absorbed by hydrogen molecules. Those wavelengths are in the extreme ultraviolet (XUV) between 90 and 110 nanometres. The beam of XUV-radiation is crossed with a beam of H2 molecules in otherwise vacuum conditions. The laboratory measurements, the calculations on the hydrogen molecule, and the statistical analysis of the data were carried out by a team at the Vrije Universiteit Amsterdam (The Netherlands) led by Wim Ubachs, further consisting of Elmar Reinhold (now associated with the European Space Agency, ESA, in Noordwijk, the Netherlands), Urs Hollenstein (now at the ETH in Zürich, Switzerland) and Ruth Buning. The observations of the quasars with UVES on ESO’s VLT were carried out by a team headed by Patrick Petitjean (Institut d’Astrophysique de Paris, France) and Alexander Ivanchik (Ioffe Institute, St. Petersburg, Russia). See also the web page of Wim Ubachs at http://www.nat.vu.nl/~wimu/NatCont-Eng.html. ?The proton-to-electron mass ratio is an important fundamental constant of Nature. This constant is dimensionless, that is, independent of any system of units. Its current value is Mp/me = 1836.1526726.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-16-06.html

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>