Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landing on Titan – the new movies

05.05.2006


A little more than one year after the spectacular descent of ESA’s Huygens on Saturn’s giant moon Titan, scientists from the probe’s Descent Imager/Spectral Radiometer (DISR) have released two new movies of the descent. These represent the best visual product from the mission obtained so far and the most realistic way yet to experience the landing on a far-away world.



These movies were built thanks to the data collected by DISR on 14 January 2005, during the 147-minutes plunge through Titan’s thick orange-brown atmosphere to a soft sandy riverbed. The data were analysed for months after the landing.

The movie ‘View from Huygens on 14 January 2005’ shows in 4 minutes 40 seconds what the probe actually ‘saw’ within the few hours of the descent and the eventual landing. "At first the Huygens camera just saw haze over the distant surface," said DISR team member Erich Karkoschka, from the DISR team at the University of Arizona and creator of the movies.


"The haze started to clear only at about 60 kilometres altitude, making it possible to resolve surface features as large as 100 metres," he continued. "But only after landing could the probe’s camera resolve little grains of sand millions and millions times smaller than Titan. A movie is a perfect medium to show such a huge change of scale."

The second, more technical movie (called ‘DISR movie’), shows DISR’s 4-hour operating life in less than five minutes, too. A detailed caption to explain how the movie is structured is provided with the video.

The scientists analysed Huygens’ speed, direction of motion, rotation and swinging during descent, represented in this movie. The video also features Huygens’ trajectory views from the south, indication of the large and unexpected parachute movements, the changing direction of view as Huygens rotates along with the relative positions of the sun and Cassini, and a clock to follow the actual sequence of events.

Sounds from a left speaker trace Huygens’ motion, with tones changing with rotational speed and the tilt of the parachute. There are also clicks that clock the rotational counter, as well as sounds for the probe’s heat shield hitting Titan’s atmosphere, parachute deployments, heat shield release, jettison of the DISR cover and touch-down.

Sounds from a right speaker go with DISR activity. There’s a continuous tone that represents the strength of Huygens’ signal to Cassini.

"DISR was a very complicated instrument," Karkoschka said. "It had to be programmed to take its 3500 exposures in a way to get the most science. It had to decide where and when to take exposures."

DISR was designed in the early to mid 1990s, when the best images returned by the Voyager missions showed Titan as a featureless, hazy disk. "We didn’t know the dynamics of Titan’s atmosphere very well, and we didn’t know how fast Huygens would rotate and swing," Karkoschka said. "It was an extremely challenging programming task to make DISR work well under every imaginable condition."

"These movies really demonstrate that the Huygens camera was very well designed for the job," said Jean-Pierre Lebreton, Huygens Project Scientist and Mission Manager at ESA. "They show so many different details of a landscape that covers only a tiny fraction (one thousandth) of Titan’s surface. This makes me dream of what a possible future mission to Titan may return from this wonderful and fascinating Earth-like world", he concluded.

Jean-Pierre Lebreton | alfa
Further information:
http://www.esa.int/esaSC/SEMKVQOFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>