Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staggering atoms sober up in physics detox cell

05.05.2006


Using an entirely new technology, a research team from Umeå University in Sweden has succeeded in controlling and converting energy from the random movement of atoms.



“You could say that we have found a detox cell where drunken atoms can sober up,” says physicist Peder Sjölund. The findings are being published in the journal Physical Review Letters.

We are surrounded by random, staggering, movements. We don’t notice it, but particles collide with each other in an uncontrolled manner in the air we breathe and in the milk we drink, for instance. This is called Brownian movement. This random movement also functions as an energy reservoir. This is something that is utilized by various systems, such as when proteins are transported in the body, so-called Brownian motors.


The Umeå scientists have developed an advanced laser technique for studying and controlling these movements. The staggering movements of atoms in a field of light can be captured in a type of detox cell made up of laser beams, where they can sober up. The staggering movement is converted there to movement in a specific direction.

“We can control this movement in three dimensions in regard to both velocity and direction,” says Peder Sjölund.

This technology will be able to provide new knowledge about how energy in living cells is converted from chemical energy to movement in molecular motors that are transported in cells. The underlying principle is very general and can also be applied in nanotechnology and for transporting information in super-rapid calculations in quantum computers, for example.

It may be utopian to be able to offer people access to free and inexhaustible energy by converting energy with this technology, and this will certainly not become a reality in our lifetime. Nevertheless, the Umeå scientists have shown that it is possible, though only in tiny systems.

Karin Wikman | alfa
Further information:
http://www.umu.se

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>