Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton ’spare-time’ provides impressive sky survey

04.05.2006


For the past four years, while ESA’s XMM-Newton X-ray observatory has been slewing between different targets ready for the next observation, it has kept its cameras open and used this spare time to quietly look at the heavens. The result is a ’free-of-charge’ mission spin-off – a survey that has now covered an impressive 25 percent of the sky.



The rapid slewing of the satellite across the sky means that a star or a galaxy passes in the field of view of the telescope for ten seconds only. However, the great collecting area of the XMM-Newton mirrors, coupled with the efficiency of its image sensors, is allowing thousands of sources to be detected.
Furthermore, XMM-Newton can pinpoint the position of X-rays coming from the sky with a resolution far superior to that available for most previous all-sky surveys. This is sufficient to allow the source of these X-rays to be found in many cases.

By comparing XMM-Newton survey’s data with those obtained over a decade ago by the international ROSAT mission, which also performed an all-sky survey, scientists can now check the long-term stability, or the evolution, of about two thousand objects in the sky.



An initial look shows that some sources have changed their brightness level by an incredible amount. The most extreme of these are variable stars and more surprisingly galaxies, whose unusual volatility may be due to large quantities of matter being consumed by an otherwise dormant central black hole.

The slew survey is particularly sensitive to active galactic nuclei (AGN) - galaxies with an unusually bright nucleus – which can be traced out to a distance of ten thousand million light years.

While most stars and galaxies look like points in the sky, about 15 percent of the sources catalogued by XMM-Newton have an extended X-ray emission. Most of these are clusters of galaxies - gigantic conglomerations of galaxies which trap hot gas that emit X-rays over scales of a million light years.

Eighty-one of these clusters are already famous from earlier work but many other clusters, previously unknown, appear in this new XMM-Newton sky catalogue.
Scientists hope that the newly detected sources of this kind also include very distant clusters which are highly luminous in X-rays, as these objects are invaluable for investigating the evolution of the Universe. Follow-up observations by large optical telescopes are now needed to determine the distances of the individual galaxies in the newly discovered clusters.

Using traditional pointed observations, it takes huge amounts of telescope-time to image very large sky features, such as old supernova remnants, in their entirety. The slewing mechanism provides a very efficient method of mapping these objects, and several have been imaged including the 20 000 year-old Vela supernova remnant, which occupies a sky area 150 times larger than the full moon.

Extraordinarily bright, low-mass X-ray binary systems of stars (called ’LMXB’) – either powered by matter pulled from a normal star, or exploding onto the surface of a neutron star, or being consumed by a black hole - are observed with sufficient sensitivity to record their detailed light spectrum. Passes across these intense X-ray sources can help astronomers to understand the long-term physics of the interaction between the two stars of the binary system.

Many areas of astronomy are expected to be influenced by the XMM-Newton sky survey. Today, 3 May 2006, the XMM-Newton scientist have released a part of the catalogue resulting from the initial processing of the highest quality data obtained so far.

Such data correspond to a sky coverage of about 15 percent, and include more than 2700 very bright sources and a further 2000 sources of lower significance. Currently, about 55 percent of the catalogue entries have been identified with known stars, galaxies, quasars and clusters of galaxies.

A faster turn-around of slew-data processing is now planned to catch interesting transient (or temporary) targets in the act, before they have a chance to fade. This will give access to rare, energetic events, which only a sensitive wide-angle survey such as XMM-Newton’s can achieve.

It is planned to continually update the catalogue as XMM-Newton charts its way through the stars. This will cover at least 80 percent of the sky, leaving a tremendous legacy for the future.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMA7OOFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>