Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton ’spare-time’ provides impressive sky survey

04.05.2006


For the past four years, while ESA’s XMM-Newton X-ray observatory has been slewing between different targets ready for the next observation, it has kept its cameras open and used this spare time to quietly look at the heavens. The result is a ’free-of-charge’ mission spin-off – a survey that has now covered an impressive 25 percent of the sky.



The rapid slewing of the satellite across the sky means that a star or a galaxy passes in the field of view of the telescope for ten seconds only. However, the great collecting area of the XMM-Newton mirrors, coupled with the efficiency of its image sensors, is allowing thousands of sources to be detected.
Furthermore, XMM-Newton can pinpoint the position of X-rays coming from the sky with a resolution far superior to that available for most previous all-sky surveys. This is sufficient to allow the source of these X-rays to be found in many cases.

By comparing XMM-Newton survey’s data with those obtained over a decade ago by the international ROSAT mission, which also performed an all-sky survey, scientists can now check the long-term stability, or the evolution, of about two thousand objects in the sky.



An initial look shows that some sources have changed their brightness level by an incredible amount. The most extreme of these are variable stars and more surprisingly galaxies, whose unusual volatility may be due to large quantities of matter being consumed by an otherwise dormant central black hole.

The slew survey is particularly sensitive to active galactic nuclei (AGN) - galaxies with an unusually bright nucleus – which can be traced out to a distance of ten thousand million light years.

While most stars and galaxies look like points in the sky, about 15 percent of the sources catalogued by XMM-Newton have an extended X-ray emission. Most of these are clusters of galaxies - gigantic conglomerations of galaxies which trap hot gas that emit X-rays over scales of a million light years.

Eighty-one of these clusters are already famous from earlier work but many other clusters, previously unknown, appear in this new XMM-Newton sky catalogue.
Scientists hope that the newly detected sources of this kind also include very distant clusters which are highly luminous in X-rays, as these objects are invaluable for investigating the evolution of the Universe. Follow-up observations by large optical telescopes are now needed to determine the distances of the individual galaxies in the newly discovered clusters.

Using traditional pointed observations, it takes huge amounts of telescope-time to image very large sky features, such as old supernova remnants, in their entirety. The slewing mechanism provides a very efficient method of mapping these objects, and several have been imaged including the 20 000 year-old Vela supernova remnant, which occupies a sky area 150 times larger than the full moon.

Extraordinarily bright, low-mass X-ray binary systems of stars (called ’LMXB’) – either powered by matter pulled from a normal star, or exploding onto the surface of a neutron star, or being consumed by a black hole - are observed with sufficient sensitivity to record their detailed light spectrum. Passes across these intense X-ray sources can help astronomers to understand the long-term physics of the interaction between the two stars of the binary system.

Many areas of astronomy are expected to be influenced by the XMM-Newton sky survey. Today, 3 May 2006, the XMM-Newton scientist have released a part of the catalogue resulting from the initial processing of the highest quality data obtained so far.

Such data correspond to a sky coverage of about 15 percent, and include more than 2700 very bright sources and a further 2000 sources of lower significance. Currently, about 55 percent of the catalogue entries have been identified with known stars, galaxies, quasars and clusters of galaxies.

A faster turn-around of slew-data processing is now planned to catch interesting transient (or temporary) targets in the act, before they have a chance to fade. This will give access to rare, energetic events, which only a sensitive wide-angle survey such as XMM-Newton’s can achieve.

It is planned to continually update the catalogue as XMM-Newton charts its way through the stars. This will cover at least 80 percent of the sky, leaving a tremendous legacy for the future.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMA7OOFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>