Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New laser lab shows fastest physical processes known

03.05.2006


The University of Reading has developed a laser laboratory that is capable of showing some of the fastest physical processes known. The Ultrafast Laser Laboratory (ULL) can generate high energy laser light pulses with durations less than one tenth of a millionth of a millionth of a second long. The pulses can be tailored to have a particular shape and their properties can be measured.



The Department of Physics and the School of Systems Engineering at the University received funding from the Science Research Investment Fund for the project. This state of the art facility took nearly two years to design and build and now contains an impressive suite of recently developed instruments.

The laser pulses created in the ULL have a wide range of functions and will be used to investigate theories in fundamental physics as well as practical applications in medical science, DNA sequencing and even to discover more about the composition of archaeological finds.


Dr Sean O’Leary, Laboratory Manager of the ULL, said: "More than twenty potential research projects using the ULL have been proposed so far, in collaboration with other groups within the University, with local companies and with medical physicists at the Royal Berkshire Hospital. Members of the Department of Systems Engineering at the University are using the lasers to develop new sources of light waves in the ‘Terahertz gap’ – the last unconquered region of the electromagnetic spectrum.

"The lab is also being used in conjunction with Imperial College London to test our understanding of molecular quantum theory. This is a very exciting field of research at the very forefront of our scientific knowledge. We will be producing and using some of the shortest light pulses in the world, right here at Reading."

As well as being used for research, the facility will be a valuable teaching aid, as students at the University are already taking part in projects on the very limits of scientific understanding.

Eleanor Holmes | alfa
Further information:
http://www.ull.reading.ac.uk

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>