Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incredibly short light pulses capture our microscopic world

03.05.2006


An international collaboration including researchers from Amsterdam, Paris, Baton Rouge (USA) and Lund University, (Sweden), has made a breakthrough which moves some of the mathematics of quantum mechanics off of the blackboard and into the laboratory - from theory to reality. Using extremely short pulses of light, new knowledge about the wave-like nature of matter can be obtained.



The Lund group presently holds the world record for producing short laser pulses. In the High-power laser facility at the Lund University, trains of pulses where each pulse is 200 attoseconds long and separated from the next pulse by 1.3 femtoseconds, are routinely produced. A femtosecond is 10-15 seconds, i.e. one-millionth-of-a-billionth of a second, while an attosecond is still one thousand times shorter. These incredibly short light pulses allow scientists to make snapshots of the most rapidly moving constituents of atoms and molecules, the electrons. In a paper published in this month’s issue of Nature Physics, the scientists demonstrate that attosecond pulses are an extremely powerful tool for studying the wave-like nature of electrons.

Quantum mechanics describes all the properties of matter in a probabilistic manner with so-called wave functions. Wave functions describe, for example, the probability that an electron is found at a particular position or that an electron moves with a particular velocity. They also describe how – similar to light - matter sometimes behaves more like a particle, and sometimes more like a wave. Importantly, the wave function is – in mathematical terms - a complex quantity, that it is characterized by both an amplitude and a phase. Though theorists can calculate complex valued wave functions and use them to make precise predictions about the behaviour of matter, the complete measurement of a wave function, both its amplitude and phase, is notoriously difficult. This is why most experiments only give information about the amplitudes of wave functions and not their phase.


In their paper, the scientists now report that they have developed a technique for measuring the phase of an electronic wave function, making use of attosecond pulses. The technique is based on interferences between electrons that are created by two attosecond pulses that quickly follow each other. The technique combines the ultrashort light pulses generated in Lund with an electron imaging detector that was built in Amsterdam and moved to Lund for the experiment. In the experiments, argon atoms were ionized by a series of attosecond pulses in the extreme ultraviolet wavelength range in the presence of longer pulses of intense infrared laser light. When the argon atoms absorb the extreme ultraviolet light of the attosecond pulses, electrons escape in bunches (called wave packets). The intense infrared light changes the velocity of the electron wave packets, and they start to interfere with each other and form complicated interference patterns. The analysis of the interference patterns allowed the scientists to get unprecedented insight into the wave-nature of the electron and to extract information on the phase of the electronic wave function.

The experiment is presented in an article titled "Attosecond electron wave packet interferometry".

Göran Frankel | alfa
Further information:
http://www.nature.com/naturephysics

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>