Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incredibly short light pulses capture our microscopic world

03.05.2006


An international collaboration including researchers from Amsterdam, Paris, Baton Rouge (USA) and Lund University, (Sweden), has made a breakthrough which moves some of the mathematics of quantum mechanics off of the blackboard and into the laboratory - from theory to reality. Using extremely short pulses of light, new knowledge about the wave-like nature of matter can be obtained.



The Lund group presently holds the world record for producing short laser pulses. In the High-power laser facility at the Lund University, trains of pulses where each pulse is 200 attoseconds long and separated from the next pulse by 1.3 femtoseconds, are routinely produced. A femtosecond is 10-15 seconds, i.e. one-millionth-of-a-billionth of a second, while an attosecond is still one thousand times shorter. These incredibly short light pulses allow scientists to make snapshots of the most rapidly moving constituents of atoms and molecules, the electrons. In a paper published in this month’s issue of Nature Physics, the scientists demonstrate that attosecond pulses are an extremely powerful tool for studying the wave-like nature of electrons.

Quantum mechanics describes all the properties of matter in a probabilistic manner with so-called wave functions. Wave functions describe, for example, the probability that an electron is found at a particular position or that an electron moves with a particular velocity. They also describe how – similar to light - matter sometimes behaves more like a particle, and sometimes more like a wave. Importantly, the wave function is – in mathematical terms - a complex quantity, that it is characterized by both an amplitude and a phase. Though theorists can calculate complex valued wave functions and use them to make precise predictions about the behaviour of matter, the complete measurement of a wave function, both its amplitude and phase, is notoriously difficult. This is why most experiments only give information about the amplitudes of wave functions and not their phase.


In their paper, the scientists now report that they have developed a technique for measuring the phase of an electronic wave function, making use of attosecond pulses. The technique is based on interferences between electrons that are created by two attosecond pulses that quickly follow each other. The technique combines the ultrashort light pulses generated in Lund with an electron imaging detector that was built in Amsterdam and moved to Lund for the experiment. In the experiments, argon atoms were ionized by a series of attosecond pulses in the extreme ultraviolet wavelength range in the presence of longer pulses of intense infrared laser light. When the argon atoms absorb the extreme ultraviolet light of the attosecond pulses, electrons escape in bunches (called wave packets). The intense infrared light changes the velocity of the electron wave packets, and they start to interfere with each other and form complicated interference patterns. The analysis of the interference patterns allowed the scientists to get unprecedented insight into the wave-nature of the electron and to extract information on the phase of the electronic wave function.

The experiment is presented in an article titled "Attosecond electron wave packet interferometry".

Göran Frankel | alfa
Further information:
http://www.nature.com/naturephysics

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>