Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incredibly short light pulses capture our microscopic world

03.05.2006


An international collaboration including researchers from Amsterdam, Paris, Baton Rouge (USA) and Lund University, (Sweden), has made a breakthrough which moves some of the mathematics of quantum mechanics off of the blackboard and into the laboratory - from theory to reality. Using extremely short pulses of light, new knowledge about the wave-like nature of matter can be obtained.



The Lund group presently holds the world record for producing short laser pulses. In the High-power laser facility at the Lund University, trains of pulses where each pulse is 200 attoseconds long and separated from the next pulse by 1.3 femtoseconds, are routinely produced. A femtosecond is 10-15 seconds, i.e. one-millionth-of-a-billionth of a second, while an attosecond is still one thousand times shorter. These incredibly short light pulses allow scientists to make snapshots of the most rapidly moving constituents of atoms and molecules, the electrons. In a paper published in this month’s issue of Nature Physics, the scientists demonstrate that attosecond pulses are an extremely powerful tool for studying the wave-like nature of electrons.

Quantum mechanics describes all the properties of matter in a probabilistic manner with so-called wave functions. Wave functions describe, for example, the probability that an electron is found at a particular position or that an electron moves with a particular velocity. They also describe how – similar to light - matter sometimes behaves more like a particle, and sometimes more like a wave. Importantly, the wave function is – in mathematical terms - a complex quantity, that it is characterized by both an amplitude and a phase. Though theorists can calculate complex valued wave functions and use them to make precise predictions about the behaviour of matter, the complete measurement of a wave function, both its amplitude and phase, is notoriously difficult. This is why most experiments only give information about the amplitudes of wave functions and not their phase.


In their paper, the scientists now report that they have developed a technique for measuring the phase of an electronic wave function, making use of attosecond pulses. The technique is based on interferences between electrons that are created by two attosecond pulses that quickly follow each other. The technique combines the ultrashort light pulses generated in Lund with an electron imaging detector that was built in Amsterdam and moved to Lund for the experiment. In the experiments, argon atoms were ionized by a series of attosecond pulses in the extreme ultraviolet wavelength range in the presence of longer pulses of intense infrared laser light. When the argon atoms absorb the extreme ultraviolet light of the attosecond pulses, electrons escape in bunches (called wave packets). The intense infrared light changes the velocity of the electron wave packets, and they start to interfere with each other and form complicated interference patterns. The analysis of the interference patterns allowed the scientists to get unprecedented insight into the wave-nature of the electron and to extract information on the phase of the electronic wave function.

The experiment is presented in an article titled "Attosecond electron wave packet interferometry".

Göran Frankel | alfa
Further information:
http://www.nature.com/naturephysics

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>