Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurements may help show if constants are changing

02.05.2006


Physicists at JILA have performed the first-ever precision measurements using ultracold molecules, in work that may help solve a long-standing scientific mystery--whether so-called constants of nature have changed since the dawn of the universe.

The research, reported in the April 14 issue of Physical Review Letters,* involved measuring two phenomena simultaneously--electron motion, and rotating and vibrating nuclei--in highly reactive molecules containing one oxygen atom and one hydrogen atom. The researchers greatly improved the precision of these microwave frequency measurements by using electric fields to slow down the molecules, providing more time for interaction and analysis. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

Compared to the previous record, set more than 30 years ago, the JILA team improved the precision of one frequency measurement 25-fold and another 10-fold. This was achieved by producing pulses of cold molecules at various speeds, hitting each group with a microwave pulse of a selected frequency, and then measuring how many molecules were in particular energy states. The apparatus and approach were similar to those used in the NIST-F1 cesium atomic fountain clock, the nation’s primary time standard, raising the possibility of designing a clock that keeps time with molecules, instead of atoms.



The JILA team’s ability to make two molecular measurements at once enables scientists to apply mathematical calculations to probe the evolution over time of fundamental natural properties such as the fine structure constant, which is widely used in research to represent the strength of electromagnetic interactions. Another research group at the National Radio Astronomy Observatory plans to make similar frequency measurements soon of the same molecules produced in distant galaxies, which are so far from Earth that they represent a window into ancient history. By comparing precision values for the fine structure constant on Earth and in distant parts of the universe, scientists hope to determine whether this constant has changed over 10 billion years. Because the fine structure constant is used in so many fields of physics, these measurements are a way to test the consistency of existing theories. The JILA measurements could enable any change in the fine structure constant over time to be determined with a precision of one part per million.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>