Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurements may help show if constants are changing

02.05.2006


Physicists at JILA have performed the first-ever precision measurements using ultracold molecules, in work that may help solve a long-standing scientific mystery--whether so-called constants of nature have changed since the dawn of the universe.

The research, reported in the April 14 issue of Physical Review Letters,* involved measuring two phenomena simultaneously--electron motion, and rotating and vibrating nuclei--in highly reactive molecules containing one oxygen atom and one hydrogen atom. The researchers greatly improved the precision of these microwave frequency measurements by using electric fields to slow down the molecules, providing more time for interaction and analysis. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

Compared to the previous record, set more than 30 years ago, the JILA team improved the precision of one frequency measurement 25-fold and another 10-fold. This was achieved by producing pulses of cold molecules at various speeds, hitting each group with a microwave pulse of a selected frequency, and then measuring how many molecules were in particular energy states. The apparatus and approach were similar to those used in the NIST-F1 cesium atomic fountain clock, the nation’s primary time standard, raising the possibility of designing a clock that keeps time with molecules, instead of atoms.



The JILA team’s ability to make two molecular measurements at once enables scientists to apply mathematical calculations to probe the evolution over time of fundamental natural properties such as the fine structure constant, which is widely used in research to represent the strength of electromagnetic interactions. Another research group at the National Radio Astronomy Observatory plans to make similar frequency measurements soon of the same molecules produced in distant galaxies, which are so far from Earth that they represent a window into ancient history. By comparing precision values for the fine structure constant on Earth and in distant parts of the universe, scientists hope to determine whether this constant has changed over 10 billion years. Because the fine structure constant is used in so many fields of physics, these measurements are a way to test the consistency of existing theories. The JILA measurements could enable any change in the fine structure constant over time to be determined with a precision of one part per million.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>