Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser trapping of erbium may lead to novel devices

02.05.2006


Physicists at the National Institute of Standards and Technology (NIST) have used lasers to cool and trap erbium atoms, a "rare earth" heavy metal with unusual optical, electronic and magnetic properties. The element has such a complex energy structure that it was previously considered too wild to trap. The demonstration, reported in the April 14 issue of Physical Review Letters,* might lead to the development of novel nanoscale devices for telecommunications, quantum computing or fine-tuning the properties of semiconductors.


A purple laser beam slows erbium atoms (the purple beam traveling right to left) emerging from an oven at 1300 degrees C, in preparation for trapping and cooling. The unusual properties of erbium atoms and the new capability to trap them could lead to development of novel technologies. Credit: Credit: NIST



Laser cooling and trapping involves hitting atoms with laser beams of just the right color and configuration to cause the atoms to absorb and emit light in a way that leads to controlled loss of momentum and heat, ultimately producing a stable, nearly motionless state. Until now, the process has been possible only with atoms that switch easily between two energy levels without any possible stops in between. Erbium has over 110 energy levels between the two used in laser cooling, and thus has many ways to get "lost" in the process. NIST researchers discovered that these lost atoms actually get recycled, so trapping is possible after all.

The NIST team heated erbium to over 1300 degrees C to make a stream of atoms. Magnetic fields and six counter-propagating purple laser beams were then used to cool and trap over a million atoms in a space about 100 micrometers in diameter. As the atoms spend time in the trap, they fall into one or more of the 110 energy levels, stop responding to the lasers, and begin to diffuse out of the trap. Recycling occurs, though, because the atoms are sufficiently magnetic to be held in the vicinity by the trap’s magnetic field. Eventually, many of the lurking atoms fall back to the lowest energy level that resonates with the laser light and are recaptured in the trap.


The erbium atoms can be trapped at a density that is high enough to be a good starting point for making a Bose-Einstein condensate, an unusual, very uniform state of matter used in NIST research on quantum computing. Cold trapped erbium also might be useful for producing single photons, the smallest particles of light, at wavelengths used in telecommunications. In addition, trapped erbium atoms might be used for "doping" semiconductors with small amounts of impurities to tailor their properties. Erbium--which, like other rare earth metals, retains its unique optical characteristics even when mixed with other materials--is already used in lasers, amplifiers and glazes for glasses and ceramics. Erbium salts, for example, emit pastel pink light.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>