Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser trapping of erbium may lead to novel devices

02.05.2006


Physicists at the National Institute of Standards and Technology (NIST) have used lasers to cool and trap erbium atoms, a "rare earth" heavy metal with unusual optical, electronic and magnetic properties. The element has such a complex energy structure that it was previously considered too wild to trap. The demonstration, reported in the April 14 issue of Physical Review Letters,* might lead to the development of novel nanoscale devices for telecommunications, quantum computing or fine-tuning the properties of semiconductors.


A purple laser beam slows erbium atoms (the purple beam traveling right to left) emerging from an oven at 1300 degrees C, in preparation for trapping and cooling. The unusual properties of erbium atoms and the new capability to trap them could lead to development of novel technologies. Credit: Credit: NIST



Laser cooling and trapping involves hitting atoms with laser beams of just the right color and configuration to cause the atoms to absorb and emit light in a way that leads to controlled loss of momentum and heat, ultimately producing a stable, nearly motionless state. Until now, the process has been possible only with atoms that switch easily between two energy levels without any possible stops in between. Erbium has over 110 energy levels between the two used in laser cooling, and thus has many ways to get "lost" in the process. NIST researchers discovered that these lost atoms actually get recycled, so trapping is possible after all.

The NIST team heated erbium to over 1300 degrees C to make a stream of atoms. Magnetic fields and six counter-propagating purple laser beams were then used to cool and trap over a million atoms in a space about 100 micrometers in diameter. As the atoms spend time in the trap, they fall into one or more of the 110 energy levels, stop responding to the lasers, and begin to diffuse out of the trap. Recycling occurs, though, because the atoms are sufficiently magnetic to be held in the vicinity by the trap’s magnetic field. Eventually, many of the lurking atoms fall back to the lowest energy level that resonates with the laser light and are recaptured in the trap.


The erbium atoms can be trapped at a density that is high enough to be a good starting point for making a Bose-Einstein condensate, an unusual, very uniform state of matter used in NIST research on quantum computing. Cold trapped erbium also might be useful for producing single photons, the smallest particles of light, at wavelengths used in telecommunications. In addition, trapped erbium atoms might be used for "doping" semiconductors with small amounts of impurities to tailor their properties. Erbium--which, like other rare earth metals, retains its unique optical characteristics even when mixed with other materials--is already used in lasers, amplifiers and glazes for glasses and ceramics. Erbium salts, for example, emit pastel pink light.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>