Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water and Nanoelectronics Will Mix to Create Ultra-Dense Memory Storage Devices

28.04.2006


Excessive moisture can typically wreak havoc on electronic devices, but now researchers have demonstrated that a little water can help create ultra-dense storage systems for computers and electronics.



A team of experimentalists and theorists at the University of Pennsylvania, Drexel University and Harvard University has proposed a new and surprisingly effective means of stabilizing and controlling ferroelectricity in nanostructures: terminating their surfaces with fragments of water. Ferroelectrics are technologically important "smart" materials for many applications because they have local dipoles, which can switch up and down to encode and store information. The team’s work is reported in the April issue of Nano Letters.

"It is astonishing to see that a single wire of even a few atoms across can act as a stable and switchable dipole memory element," Jonathan Spanier, assistant professor of materials science and engineering at Drexel, said.


Spanier and his colleagues successfully demonstrated the benefits of using water to stabilize memory bits in segments of oxide nanowires that are only about 3 billionths of a meter wide.

"We have been interested in how water sticks to oxides," Alexie Kolpak, Penn graduate student in theoretical physical chemistry, said. "We are particularly excited that water is the key ingredient in making these wires ’remember’ their state."

In this investigation, led by Hongkun Park of Harvard and Andrew Rappe of Penn, the researchers probed oxide nanowires individually to characterize the size-dependence of ferroelectricity and performed calculations and experiments to validate the presence of molecules on oxide surfaces and detail their important role in nanoscale ferroelectricity. Significantly, these results show that ferroelectric surfaces with water fragments or other molecules can stabilize ferroelectricity in smaller structures than previously thought.

Though a scheme for the dense arrangement and addressing of these nanowires remains to be developed, such an approach would enable a storage density of more than 100,000 terabits per cubic centimeter. If this memory density can be realized commercially, a device the size of an iPod nano could hold enough MP3 music to play for 300,000 years without repeating a song or enough DVD quality video to play movies for 10,000 years without repetition.

This work is supported by the National Science Foundation, the Packard Foundation, the Dreyfus Foundation, the Office of Naval Research, the Center for Piezoelectric Design and the Army Research Office.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>