Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton digs into the secrets of fossil galaxy clusters

28.04.2006


Taking advantage of the high sensitivity of ESA’s XMM-Newton and the sharp vision of NASA’s Chandra X-Ray space observatories, astronomers have studied the behaviour of massive fossil galaxy clusters, trying to find out how they find the time to form…



Many galaxies reside in galaxy groups, where they experience close encounters with their neighbours and interact gravitationally with the dark matter - mass which permeates the whole intergalactic space but is not directly visible because it doesn’t emit radiation.
These interactions cause large galaxies to spiral slowly towards the centre of the group, where they can merge to form a single giant central galaxy, which progressively swallows all its neighbours.

If this process runs to completion, and no new galaxies fall into the group, then the result is an object dubbed a ’fossil group’, in which almost all the stars are collected into a single giant galaxy, which sits at the centre of a group-sized dark matter halo. The presence of this halo can be inferred from the presence of extensive hot gas, which fills the gravitational potential wells of many groups and emits X-rays.



A group of international astronomers studied in detail the physical features of the most massive and hot known fossil group, with the main aim to solve a puzzle and understand the formation of massive fossils. In fact, according to simple theoretical models, they simply could not have formed in the time available to them!

The fossil group investigated, called ’RX J1416.4+2315’, is dominated by a single elliptical galaxy located one and a half thousand million light years away from us, and it is 500 thousand million times more luminous than the Sun.

The XMM-Newton and Chandra X-ray observations, combined with optical and infrared analyses, revealed that group sits within a hot gas halo extending over three million light years and heated to a temperature of 50 million degrees, mainly due to shock heating as a result of gravitational collapse.

Such a high temperature, about as twice as the previously estimated values, is usually characteristic of galaxy clusters. Another interesting feature of the whole cluster system is its large mass, reaching over 300 trillion solar masses. Only about two percent of it in the form of stars in galaxies, and 15 percent in the form of hot gas emitting X-rays. The major contributor to the mass of the system is the invisible dark matter, which gravitationally binds the other components.

According to calculations, a fossil cluster as massive as RX J1416.4+2315 would have not had the time to form during the whole age of the universe. The key process in the formation of such fossil groups is the process known as ’dynamical friction’, whereby a large galaxy loses its orbital energy to the surrounding dark matter. This process is less effective when galaxies are moving more quickly, which they do in massive ’clusters’ of galaxies.

This, in principle, sets an upper limit to the size and mass of fossil groups. The exact limits are, however, still unknown since the geometry and mass distribution of groups may differ from that assumed in simple theoretical models.

“Simple models to describe the dynamical friction assume that the merging galaxies move along circular orbits around the centre of the cluster mass“, says Habib Khosroshahi from the University of Birmingham (UK), first author of the results. “Instead, if we assume that galaxies fall towards the centre of the developing cluster in an asymmetric way, such as along a filament, the dynamic friction and so the cluster formation process may occur in a shorter time scale,” he continues. Such a hypothesis is supported by the highly elongated X-ray emission we observed in RX J1416.4+2315, to sustain the idea of a collapse along a dominant filament.”

The optical brightness of the central dominant galaxy in this fossil is similar to that of brightest galaxies in large clusters (called ’BCGs’). According to the astronomers, this implies that such galaxies could have originated in fossil groups around which the cluster builds up later. This offers an alternative mechanism for the formation of BCGs compared to the existing scenarios in which BCGs form within clusters during or after the cluster collapse.

“The study of massive fossil groups such as RX J1416.4+2315 is important to test our understanding of the formation of structure in the universe,” adds Khosroshahi. “Cosmological simulations are underway which attempt to reproduce the properties we observe, in order to understand how these extreme systems develop,” he concludes.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMCFFOFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>