Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMART-1 maps Humorum edge - where Highlands and Mare mix

27.04.2006


This sequence of images, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 spacecraft, shows on area on the near side of the Moon, on the edge of the Mare Humorum basin.



AMIE obtained these raw images on 13 January 2006 from a distance ranging between 1031 and 1107 kilometres from the surface, with a ground resolution between 93 and 100 metres per pixel.

The imaged area is located at longitude 45.7º West and latitude between 30.5º and 24.5º South. The field of view of each single image is about 50 kilometres.


The flat lava plain in the upper right image is the floor of Mare Humorum. The bowl-shaped crater on top, cut by a fracture, is called ‘Liebig F’ and has a diameter of nine kilometres.

The Mare Humorum impact basin is 825 kilometres across. Its precise age could not be determined yet by previous lunar programmes, but geologic mapping suggest it could be around 3.9 thousand million years old – an age comprised between those of the Imbrium and Nectaris Basins. The Humorum basin is filled with a layer of basalt, likely thicker than three kilometres at its centre.

The Humorum basin, like several other lunar basins, was formed in a period which ended around 4.1 billion years ago. It was filled with mare material - basaltic flood eruptions caused by very large meteoroid impacts - only during the later Eratosthenian era, in a period comprised between 3.9 and 3.2 billion years ago. The western edge of the sea is marked by a network of cracks and clefts following the Rupes Liebig.

The three northern images include part of the flat darker area corresponding to the mare basalt filling the inner ring of the basin impact. A fresh small crater is surrounded by brighter deposits.

The top north image also shows giant lava tubes or rilles in the Mare. Some graben-lineated structures (a graben is an elongated and relatively depressed crustal block that between two fault systems) indicate the stress structures created during the multi-ring collapse, and refreshed by additional load deformation from the weight of later basalt fill.

It is possible to notice the landscape transition towards the most southern image typical of an old cratered highland. In the middle image the small craters are not very clear because the terrain has been partly covered by material ejected from the impact basin.

Bernard H. Foing | alfa
Further information:
http://www.esa.int/esaSC/SEMHWFOFGLE_index_0.html

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>