Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence mounts for sun’s companion star

26.04.2006


The Binary Research Institute (BRI) has found that orbital characteristics of the recently discovered planetoid, "Sedna", demonstrate the possibility that our sun might be part of a binary star system. A binary star system consists of two stars gravitationally bound orbiting a common center of mass. Once thought to be highly unusual, such systems are now considered to be common in the Milky Way galaxy.



Walter Cruttenden at BRI, Professor Richard Muller at UC Berkeley, Dr. Daniel Whitmire of the University of Louisiana, amongst several others, have long speculated on the possibility that our sun might have an as yet undiscovered companion. Most of the evidence has been statistical rather than physical. The recent discovery of Sedna, a small planet like object first detected by Cal Tech astronomer Dr. Michael Brown, provides what could be indirect physical evidence of a solar companion. Matching the recent findings by Dr. Brown, showing that Sedna moves in a highly unusual elliptical orbit, Cruttenden has determined that Sedna moves in resonance with previously published orbital data for a hypothetical companion star.

In the May 2006 issue of Discover, Dr. Brown stated: "Sedna shouldn’t be there. There’s no way to put Sedna where it is. It never comes close enough to be affected by the sun, but it never goes far enough away from the sun to be affected by other stars... Sedna is stuck, frozen in place; there’s no way to move it, basically there’s no way to put it there – unless it formed there. But it’s in a very elliptical orbit like that. It simply can’t be there. There’s no possible way - except it is. So how, then?"


"I’m thinking it was placed there in the earliest history of the solar system. I’m thinking it could have gotten there if there used to be stars a lot closer than they are now and those stars affected Sedna on the outer part of its orbit and then later on moved away. So I call Sedna a fossil record of the earliest solar system. Eventually, when other fossil records are found, Sedna will help tell us how the sun formed and the number of stars that were close to the sun when it formed."

Walter Cruttenden agrees that Sedna’s highly elliptical orbit is very unusual, but noted that the orbit period of 12,000 years is in neat resonance with the expected orbit periodicity of a companion star as outlined in several prior papers. Consequently, Cruttenden believes that Sedna’s unusual orbit is something indicative of the current solar system configuration, not merely a historical record. "It is hard to imagine that Sedna would retain its highly elliptical orbit pattern since the beginning of the solar system billions of years ago. Because eccentricity would likely fade with time, it is logical to assume Sedna is telling us something about current, albeit unexpected solar system forces, most probably a companion star".

Outside of a few popular articles, and Cruttenden’s book "Lost Star of Myth and Time", which outlines historical references and the modern search for the elusive companion, the possibility of a binary partner star to our sun has been left to the halls of academia. But with Dr. Brown’s recent discoveries of Sedna and Xena, (now confirmed to be larger than Pluto), and timing observations like Cruttenden’s, the search for a companion star may be gaining momentum.

Heidi Hall | EurekAlert!
Further information:
http://www.binaryresearchinstitute.org/

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>