Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system of automatic control capable of governing satellite telescopes

25.04.2006


A team of Control Engineering researchers at the Public University of Navarra has successfully finalised their work on QFT Multivariable Robust Control of Darwin-type Satellites with large flexible structures, undertaken for the European Space Agency (ESA).



The scientists have designed a new automatic control system capable of governing the Darwin Project satellite telescopes.

The Darwin Project


The European Space Agency is currently developing what is known as the Darwin Project involving the launching into space in 2014 of six satellite telescopes flying in formation. This mission will enable the study of the Universe with hitherto unprecedented precision and depth, improving on current telescopes by several orders of magnitude. Amongst the immediate aims is the search for new planets outside the Solar System and which have possibilities of life on them.

The work developed by the team of researchers at the Public University of Navarra on the design of new control systems for governing satellites in formation attracted the attention of the ESA.

The problem was one of enormous complexity, the remit of the researchers from Navarre requiring the design of a new automatic control system capable of governing satellites in a high-precision manner. In fact, it had to be undertaken with a precision in the order of micro-meters in the orbital three-dimensional position and of milliarcseconds (a 3.6 millionth part of a degree) in each one of the three angles of orientation in space. Moreover, the vibrations introduced by their flexible structures, wind perturbations and gravitational phenomena had to be rejected simultaneously. These specifications were imposed by the enormous precision required of the on-board telescopes whose mission is to probe the furthest points of the Universe with great exactitude.

In developing the research project, two control systems, previously designed for the ESA by an international consortium, were employed. This part of the work involved comparing these with the latest theories on QFT multivariable robust control developed by the research team.

The final results of the project have proved totally satisfactory. The viability of the new QFT developments has been confirmed, improving greatly on the dynamic behaviour of the satellite achieved by previous control theories regarding the twelve evaluation criteria studied.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=955

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>