Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano machine switches between biological and silicon worlds

25.04.2006


Scientists have created a molecular switch that could play a key role in thousands of nanotech applications. The Mol-Switch project successfully developed a demonstrator to prove the principle, despite deep scepticism from specialist colleagues in biotechnology and biophysics.



"Frankly, some researchers didn’t think what we were attempting was possible," says Dr Keith Firman, at Portsmouth University and Mol-Switch project coordinator, funded under the European Commission’s Future and Emerging Technologies initiative. "However, we got our molecular switch to work."

The upshot is that the Mol-Switch project was far more successful than expected. The team’s switch works with a number of DNA-based motors and can achieve incredible performance.


Specific sensors, which emit electrons, can tell if the biological motor is working, so the switch links the biological world with the silicon world of electronic signals.

Here’s how it works. The team uses a microfluidics chip that includes a number of channels measured in nano-metres. The novelty of microfluidics is that it can channel liquids in laminar, or predictable, flow.

The floor of this channel is peppered with Hall-Effect sensors. The Hall Effect describes how a magnetic field influences an electric current. That influence can be measured to a high degree of accuracy. These measurements link the biological motor with the electronic signals of the silicon world.

The biological element of the device starts with a DNA molecule fixed to the floor of the microfluidic channel. This strand is held upright, like a string held up by a weather balloon, by anchoring the floating end of the DNA strand to a magnetic bead, itself held up under the influence of magnetism.

A specific type of protein, called a Restriction-Modification enzyme, provides one of the DNA motors. This type of DNA motor will only bind to a specific sequence of the DNA bases A, C, G and T. "This binding is very specific, a motor will bind only with its corresponding bases, so you can control exactly where the motor is placed on the vertical DNA strand," says Firman.

The motor is attached to the strand at the specific sequence of bases. Then the team introduces ATP, the phosphate molecule that provides energy within living cells, into the microfluidics channel. This is the fuel for the motor. The motor then pulls the upright DNA strand through it until it reaches the magnetic bead, like a winch lowering a weather balloon.

A Hall-Effect sensor can measure the vertical movement of the magnetic bead which indicates whether the switch is on or off. That, in an over-simplified nutshell, is the essence of the molecular switch, an actuator for the nano-scale world.

This is particularly important because a nano-scale actuator will be immensely useful. An actuator is a mechanism that supplies and transmits a measured amount of energy for the operation of another mechanism or system. It can be a simple mechanical device, converting various forms of energy to rotating or linear mechanical energy. Or it can convert mechanical action into an electrical signal. It works both ways.

"The light switch, the button that makes a retractable pen, all these are actuators, and by developing a molecular switch we’ve created a tiny actuator that could be used in an equally vast number of applications," says Firman.

The number of potential applications is staggering. They can be used for flow-control valves, pumps, positioning drives, motors, switches, relays and biosensors.

The system could be used to develop molecular circuits, or even molecular scale mechanical devices. The potential applications are difficult to predict, but are only limited by the imagination of researchers, such is the versatility of an actuator on this scale.

"It could be used as a communicator between the biological and silicon worlds. I could see it providing an interface between muscle and external devices, through its use of ATP, in human implants. Such an application is still 20 or 30 years away," says Firman "It’s very exciting and right now we’re applying for a patent for the basic concepts."

One hugely important application is DNA sequencing, discovering the order of the four DNA-bases, the absolutely fundamental step for genetic research. This is almost a ’bonus’ application, a happy side effect of the actuator’s operation.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81586

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>