Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint-on laser could rescue computer chip industry

19.04.2006


Laser that could save computer industry from ’interconnect bottleneck’ uses quantum paint — and a hairdryer

Researchers at the University of Toronto have created a laser that could help save the $200-billion dollar computer chip industry from a looming crisis dubbed the "interconnect bottleneck."

But this isn’t a laser in the stereotypical sense -- no corded, clunky boxes projecting different coloured lights. In fact, Professor Ted Sargent, of the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, carries a small vial of the paint used to make this laser in his briefcase -- it looks like diluted ink.



Lasers that can produce coherent infrared light in the one to two nanometre wavelength range are essential in telecommunications, biomedical diagnosis and optical sensing. The speed and density of computer chips has risen exponentially over the years, and within 15 to 20 years the industry is expected to reach a point where components can’t get any faster. But the interconnect bottleneck -- the point where microchips reach their capacity -- is expected sometime around 2010.

To tackle this problem, Sargent, a Canada Research Chair in Nanotechnology, created the new laser using colloidal quantum dots -- nanometre-sized particles of semiconductor that are suspended in a solvent like the particles in paint. "We’ve made a laser that can be smeared onto another material," says Sargent. "This is the first paint-on semiconductor laser to produce the invisible colours of light needed to carry information through fiber-optics. The infrared light could, in the future, be used to connect microprocessors on a silicon computer chip." A study describing the laser was published in the April 17 issue of the journal Optics Express.

According to Sjoerd Hoogland, a post-doctoral fellow and the first author of the paper, "this laser could help us to keep feeding the information-hungry Internet generation." The laser’s most remarkable feature was its simplicity. "I made the laser by dipping a miniature glass tube in the paint and then drying it with a hairdryer," he said. "Once the right nanoparticles are made, the procedure takes about five minutes."

The microchip industry is looking for components that exist on the scale of transistors and are made of semiconductors, which would produce light when exposed to electrical current. With this development, it could be possible to use the electronics already found on microchips to power a laser that communicates within the chip itself.

"We crystallized precisely the size of the nanoparticles that would tune the colour of light coming from the laser. We chose nanoparticle size, and thus colour, the way a guitarist chooses frets to select the pitch of the instrument," Hoogland said. "Optical data transfer relies on light in the infrared--beams of light 1.5 micrometers in wavelength travel farthest in glass. We made our particles just the right size to generate laser light at exactly this wavelength."

Lionel C. Kimerling, Thomas Lord Professor of Materials Science and director of the Microphotonics Center at the Massachusetts Institute of Technology, reviewed the work. "The wavelength and the thermal budget of the Toronto laser are very appealing for applications in optical interconnects," Kimerling says. "The performance is excellent, particularly the temperature insensitivity of the output wavelength."

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>