Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint-on laser could rescue computer chip industry

19.04.2006


Laser that could save computer industry from ’interconnect bottleneck’ uses quantum paint — and a hairdryer

Researchers at the University of Toronto have created a laser that could help save the $200-billion dollar computer chip industry from a looming crisis dubbed the "interconnect bottleneck."

But this isn’t a laser in the stereotypical sense -- no corded, clunky boxes projecting different coloured lights. In fact, Professor Ted Sargent, of the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, carries a small vial of the paint used to make this laser in his briefcase -- it looks like diluted ink.



Lasers that can produce coherent infrared light in the one to two nanometre wavelength range are essential in telecommunications, biomedical diagnosis and optical sensing. The speed and density of computer chips has risen exponentially over the years, and within 15 to 20 years the industry is expected to reach a point where components can’t get any faster. But the interconnect bottleneck -- the point where microchips reach their capacity -- is expected sometime around 2010.

To tackle this problem, Sargent, a Canada Research Chair in Nanotechnology, created the new laser using colloidal quantum dots -- nanometre-sized particles of semiconductor that are suspended in a solvent like the particles in paint. "We’ve made a laser that can be smeared onto another material," says Sargent. "This is the first paint-on semiconductor laser to produce the invisible colours of light needed to carry information through fiber-optics. The infrared light could, in the future, be used to connect microprocessors on a silicon computer chip." A study describing the laser was published in the April 17 issue of the journal Optics Express.

According to Sjoerd Hoogland, a post-doctoral fellow and the first author of the paper, "this laser could help us to keep feeding the information-hungry Internet generation." The laser’s most remarkable feature was its simplicity. "I made the laser by dipping a miniature glass tube in the paint and then drying it with a hairdryer," he said. "Once the right nanoparticles are made, the procedure takes about five minutes."

The microchip industry is looking for components that exist on the scale of transistors and are made of semiconductors, which would produce light when exposed to electrical current. With this development, it could be possible to use the electronics already found on microchips to power a laser that communicates within the chip itself.

"We crystallized precisely the size of the nanoparticles that would tune the colour of light coming from the laser. We chose nanoparticle size, and thus colour, the way a guitarist chooses frets to select the pitch of the instrument," Hoogland said. "Optical data transfer relies on light in the infrared--beams of light 1.5 micrometers in wavelength travel farthest in glass. We made our particles just the right size to generate laser light at exactly this wavelength."

Lionel C. Kimerling, Thomas Lord Professor of Materials Science and director of the Microphotonics Center at the Massachusetts Institute of Technology, reviewed the work. "The wavelength and the thermal budget of the Toronto laser are very appealing for applications in optical interconnects," Kimerling says. "The performance is excellent, particularly the temperature insensitivity of the output wavelength."

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>